Unsupervised learning and mapping of brain fMRI signals based on hidden semi-Markov event sequence models

被引:0
|
作者
Faisan, S
Thoraval, L
Armspach, JP
Heitz, F
机构
[1] ENSPS, CNRS, UMR 7005, MIV,LSIIT, F-67400 Illkirch Graffenstaden, France
[2] Fac Med Strasbourg, CNRS, UMR 7004, Inst Phys Biol, F-67085 Strasbourg, France
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Most methods used in functional MRI (fMRI) brain mapping require restrictive prior knowledge about the shape of the active blood-oxygenation-level-dependent (BOLD) response, thus leading to suboptimal or invalid inference. To solve this problem, we propose to assess local neural activity in terms of time alignment between the sequence of BOLD dynamics changes of interest and an Hidden Semi-Markov Event Sequence Model (HSMESM) of brain activation. The topology of the HSMESM is built from the deterministic transitions of the input stimulation paradigm and its parameters are automatically and iteratively learned from all intracranial fMRI signals. The brain mapping results achieved by HSMESMs in language processing demonstrate the relevance of such models in BOLD fMRI, especially to cope with strong variabilities of the active BOLD signal across time, brain, experiments and subjects.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [41] Quantile hidden semi-Markov models for multivariate time series
    Merlo, Luca
    Maruotti, Antonello
    Petrella, Lea
    Punzo, Antonio
    STATISTICS AND COMPUTING, 2022, 32 (04)
  • [42] A new signal model and identification algorithm for Hidden Semi-Markov signals
    Azimi, M
    Nasiopoulos, P
    Ward, RK
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 521 - 524
  • [43] Quantile hidden semi-Markov models for multivariate time series
    Luca Merlo
    Antonello Maruotti
    Lea Petrella
    Antonio Punzo
    Statistics and Computing, 2022, 32
  • [44] Unsupervised segmentation of new semi-Markov chains hidden with long dependence noise
    Lapuyade-Lahorgue, Jerome
    Pieczynski, Wojciech
    SIGNAL PROCESSING, 2010, 90 (11) : 2899 - 2910
  • [45] Using Hidden Semi-Markov Model for Learning Behavior in Smarthomes
    Paris, Arnaud
    Arbaoui, Selma
    Cislo, Nathalie
    El-Amraoui, Adnen
    Ramdani, Nacim
    2015 INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2015, : 752 - 757
  • [46] Initialization of Hidden Markov and Semi-Markov Models: A Critical Evaluation of Several Strategies
    Maruotti, Antonello
    Punzo, Antonio
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (03) : 447 - 480
  • [47] Route Restoring Based on Hidden Semi-Markov Model
    Wang, Guannan
    Ye, Jian
    Zhu, Zhenmin
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION ENGINEERING, 2014, 111 : 120 - 123
  • [48] Semi-supervised learning of Hidden Markov Models for biological sequence analysis
    Tamposis, Ioannis A.
    Tsirigos, Konstantinos D.
    Theodoropoulou, Margarita C.
    Kontou, Panagiota, I
    Bagos, Pantelis G.
    BIOINFORMATICS, 2019, 35 (13) : 2208 - 2215
  • [49] Detection of LDoS Attacks Based on Wavelet Energy Entropy and Hidden Semi-Markov Models
    Wu Z.-J.
    Li H.-J.
    Liu L.
    Zhang J.-A.
    Yue M.
    Lei J.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (05): : 1549 - 1562
  • [50] Hidden Semi-Markov Models-Based Visual Perceptual State Recognition for Pilots
    Gao, Lina
    Wang, Changyuan
    Wu, Gongpu
    SENSORS, 2023, 23 (14)