Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models

被引:33
|
作者
Adams, Stephen [1 ]
Beling, Peter A. [1 ]
Cogill, Randy [2 ]
机构
[1] Univ Virginia, Dept Syst & Informat Engn, Charlottesville, VA 22904 USA
[2] IBM Ireland Ltd, IBM House,Shelbourne Rd, Dublin D04 NP20, Ireland
来源
IEEE ACCESS | 2016年 / 4卷
关键词
Feature selection; hidden Markov models; hidden semi-Markov models; maximum a posteriori estimation; COST; CLASSIFICATION; RECOGNITION; ACQUISITION;
D O I
10.1109/ACCESS.2016.2552478
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a joint feature selection and parameter estimation algorithm is presented for hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs). New parameters, feature saliencies, are introduced to the model and used to select features that distinguish between states. The feature saliencies represent the probability that a feature is relevant by distinguishing between state-dependent and state-independent distributions. An expectation maximization algorithm is used to calculate maximum a posteriori estimates for model parameters. An exponential prior on the feature saliencies is compared with a beta prior. These priors can be used to include cost in the model estimation and feature selection process. This algorithm is tested against maximum likelihood estimates and a variational Bayesian method. For the HMM, four formulations are compared on a synthetic data set generated by models with known parameters, a tool wear data set, and data collected during a painting process. For the HSMM, two formulations, maximum likelihood and maximum a posteriori, are tested on the latter two data sets, demonstrating that the feature saliency method of feature selection can be extended to semi-Markov processes. The literature on feature selection specifically for HMMs is sparse, and non-existent for HSMMs. This paper fills a gap in the literature concerning simultaneous feature selection and parameter estimation for HMMs using the EM algorithm, and introduces the notion of selecting features with respect to cost for HMMs.
引用
收藏
页码:1642 / 1657
页数:16
相关论文
共 50 条
  • [1] Hidden semi-Markov models
    Yu, Shun-Zheng
    ARTIFICIAL INTELLIGENCE, 2010, 174 (02) : 215 - 243
  • [2] Bayesian nonparametric Hidden semi-Markov models
    Johnson, Matthew J.
    Willsky, Alan S.
    Journal of Machine Learning Research, 2013, 14 (01) : 673 - 701
  • [3] Bayesian Nonparametric Hidden Semi-Markov Models
    Johnson, Matthew J.
    Willsky, Alan S.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 673 - 701
  • [4] Online identification of Hidden Semi-Markov Models
    Azimi, M
    Nasiopoulos, P
    Ward, RK
    ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 991 - 996
  • [5] Hidden Semi-Markov Models for Predictive Maintenance
    Cartella, Francesco
    Lemeire, Jan
    Dimiccoli, Luca
    Sahli, Hichem
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [6] Weibull Partition Models with Applications to Hidden Semi-Markov Models
    Lu, Youwei
    Okada, Shogo
    Nitta, Katsumi
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 162 - 169
  • [7] Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
    Touloupou, Panayiota
    Finkenstadt, Barbel
    Spencer, Simon E. F.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) : 238 - 249
  • [8] hhsmm: an R package for hidden hybrid Markov/semi-Markov models
    Morteza Amini
    Afarin Bayat
    Reza Salehian
    Computational Statistics, 2023, 38 : 1283 - 1335
  • [9] hhsmm: an R package for hidden hybrid Markov/semi-Markov models
    Amini, Morteza
    Bayat, Afarin
    Salehian, Reza
    COMPUTATIONAL STATISTICS, 2023, 38 (03) : 1283 - 1335
  • [10] A Spectral Algorithm for Inference in Hidden semi-Markov Models
    Melnyk, Igor
    Banerjee, Arindam
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 690 - 698