Simulation of advection-diffusion-dispersion equations based on a composite time discretization scheme

被引:4
|
作者
Bu, Sunyoung [1 ]
Bak, Soyoon [2 ]
机构
[1] Hongik Univ, Dept Liberal Arts, Sejong, South Korea
[2] Kyungpook Natl Univ, Dept Math, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
Time-discretization method; Semi-Lagrangian method; Advection-diffusion equation; Advection-dispersion equation; Burgers' equations; Korteweg-de Vries-Burgers' equation; ORDER CHARACTERISTICS/FINITE ELEMENTS; DIFFERENTIAL QUADRATURE METHOD; NUMERICAL-SIMULATION; BURGERS-EQUATION; ALGORITHM;
D O I
10.1186/s13662-020-02580-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop a high-order composite time discretization scheme based on classical collocation and integral deferred correction methods in a backward semi-Lagrangian framework (BSL) to simulate nonlinear advection-diffusion-dispersion problems. The third-order backward differentiation formula and fourth-order finite difference schemes are used in temporal and spatial discretizations, respectively. Additionally, to evaluate function values at non-grid points in BSL, the constrained interpolation profile method is used. Several numerical experiments demonstrate the efficiency of the proposed techniques in terms of accuracy and computation costs, compare with existing departure traceback schemes.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A monotone finite volume scheme for advection-diffusion equations on distorted meshes
    Wang, Shuai
    Yuan, Guangwei
    Li, Yonghai
    Sheng, Zhiqiang
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 69 (07) : 1283 - 1298
  • [32] A numerical scheme for space-time fractional advection-dispersion equation
    Javadi, Shahnam
    Jani, Mostafa
    Babolian, Esmail
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2016, 7 (02): : 331 - 343
  • [33] An accurate discretization scheme for the numerical solution of time domain integral equations
    Weile, DS
    Ergin, AA
    Shanker, B
    Michielssen, E
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-4: TRANSMITTING WAVES OF PROGRESS TO THE NEXT MILLENNIUM, 2000, : 741 - 744
  • [34] AIR ALGEBRAIC MULTIGRID FOR A SPACE-TIME HYBRIDIZABLE DISCONTINUOUS GALERKIN DISCRETIZATION OF ADVECTION(-DIFFUSION)
    Sivas, A. A.
    Southworth, B. S.
    Rhebergen, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3393 - A3416
  • [35] Kernel Based High Order "Explicit" Unconditionally Stable Scheme for Nonlinear Degenerate Advection-Diffusion Equations
    Christlieb, Andrew
    Guo, Wei
    Jiang, Yan
    Yang, Hyoseon
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [36] Analysis for implicit and implicit-explicit ADER and DeC methods for ordinary differential equations, advection-diffusion and advection-dispersion equations
    Oeffner, Philipp
    Petri, Louis
    Torlo, Davide
    APPLIED NUMERICAL MATHEMATICS, 2025, 212 : 110 - 134
  • [37] Kernel Based High Order “Explicit” Unconditionally Stable Scheme for Nonlinear Degenerate Advection-Diffusion Equations
    Andrew Christlieb
    Wei Guo
    Yan Jiang
    Hyoseon Yang
    Journal of Scientific Computing, 2020, 82
  • [38] A nonoscillatory numerical scheme based on a general solution of 2-D unsteady advection-diffusion equations
    Sakai, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 108 (1-2) : 145 - 156
  • [39] Nonoscillatory numerical scheme based on a general solution of 2-D unsteady advection-diffusion equations
    Sakai, Katsuhiro
    Journal of Computational and Applied Mathematics, 1999, 108 (01): : 145 - 156
  • [40] Discretization methods with embedded analytical solutions for convection–diffusion dispersion–reaction equations and applications
    Jürgen Geiser
    Journal of Engineering Mathematics, 2007, 57 : 79 - 98