Simulation of advection-diffusion-dispersion equations based on a composite time discretization scheme

被引:4
|
作者
Bu, Sunyoung [1 ]
Bak, Soyoon [2 ]
机构
[1] Hongik Univ, Dept Liberal Arts, Sejong, South Korea
[2] Kyungpook Natl Univ, Dept Math, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
Time-discretization method; Semi-Lagrangian method; Advection-diffusion equation; Advection-dispersion equation; Burgers' equations; Korteweg-de Vries-Burgers' equation; ORDER CHARACTERISTICS/FINITE ELEMENTS; DIFFERENTIAL QUADRATURE METHOD; NUMERICAL-SIMULATION; BURGERS-EQUATION; ALGORITHM;
D O I
10.1186/s13662-020-02580-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop a high-order composite time discretization scheme based on classical collocation and integral deferred correction methods in a backward semi-Lagrangian framework (BSL) to simulate nonlinear advection-diffusion-dispersion problems. The third-order backward differentiation formula and fourth-order finite difference schemes are used in temporal and spatial discretizations, respectively. Additionally, to evaluate function values at non-grid points in BSL, the constrained interpolation profile method is used. Several numerical experiments demonstrate the efficiency of the proposed techniques in terms of accuracy and computation costs, compare with existing departure traceback schemes.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] An unconditionally positivity preserving scheme for advection-diffusion reaction equations
    Chen-Charpentier, Benito M.
    Kojouharov, Hristo V.
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2177 - 2185
  • [22] A generalised complete flux scheme for anisotropic advection-diffusion equations
    Cheng, Hanz Martin
    Boonkkamp, Jan ten Thije
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (02)
  • [23] A stabilized scheme for the lagrange multiplier method for advection-diffusion equations
    Rapin, G
    Lubet, G
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (07): : 1035 - 1060
  • [24] A parameter robust Petrov–Galerkin scheme for advection–diffusion–reaction equations
    Carlo de Falco
    Eugene O’Riordan
    Numerical Algorithms, 2011, 56 : 107 - 127
  • [25] Partially explicit time discretization for nonlinear time fractional diffusion equations
    Li, Wenyuan
    Alikhanov, Anatoly
    Efendiev, Yalchin
    Leung, Wing Tat
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 113
  • [27] ADVECTION-DIFFUSION PROCESS THROUGH A DIFFERENCE SCHEME-BASED MONTE CARLO SIMULATION
    Ahmad, Arshed A.
    Sari, Murat
    Uslu, Hande
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2020, 16 : 2027 - 2035
  • [28] A SPACE-TIME LEAST-SQUARE FINITE-ELEMENT SCHEME FOR ADVECTION DIFFUSION-EQUATIONS
    NGUYEN, H
    REYNEN, J
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 42 (03) : 331 - 342
  • [29] Discretization of the Drift-Diffusion Equations with the Composite Discontinuous Galerkin Method
    Sakowski, Konrad
    Marcinkowski, Leszek
    Strak, Pawel
    Kempisty, Pawel
    Krukowski, Stanislaw
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PPAM 2015, PT II, 2016, 9574 : 391 - 400
  • [30] Applicability of QSI scheme to advection-diffusion equations with domain decomposition method
    Ushijima, S
    Okuyama, Y
    Nezu, I
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: NEW FRONTIERS AND MULTI-DISCIPLINARY APPLICATIONS, PROCEEDINGS, 2003, : 353 - 360