Simulation of advection-diffusion-dispersion equations based on a composite time discretization scheme

被引:4
|
作者
Bu, Sunyoung [1 ]
Bak, Soyoon [2 ]
机构
[1] Hongik Univ, Dept Liberal Arts, Sejong, South Korea
[2] Kyungpook Natl Univ, Dept Math, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
Time-discretization method; Semi-Lagrangian method; Advection-diffusion equation; Advection-dispersion equation; Burgers' equations; Korteweg-de Vries-Burgers' equation; ORDER CHARACTERISTICS/FINITE ELEMENTS; DIFFERENTIAL QUADRATURE METHOD; NUMERICAL-SIMULATION; BURGERS-EQUATION; ALGORITHM;
D O I
10.1186/s13662-020-02580-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop a high-order composite time discretization scheme based on classical collocation and integral deferred correction methods in a backward semi-Lagrangian framework (BSL) to simulate nonlinear advection-diffusion-dispersion problems. The third-order backward differentiation formula and fourth-order finite difference schemes are used in temporal and spatial discretizations, respectively. Additionally, to evaluate function values at non-grid points in BSL, the constrained interpolation profile method is used. Several numerical experiments demonstrate the efficiency of the proposed techniques in terms of accuracy and computation costs, compare with existing departure traceback schemes.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Simulation of advection–diffusion–dispersion equations based on a composite time discretization scheme
    Sunyoung Bu
    Soyoon Bak
    Advances in Difference Equations, 2020
  • [2] A TIME SCHEME FOR THE INTEGRATION OF ADVECTION-DIFFUSION-EQUATIONS
    SCHENK, R
    DAMRATH, U
    ZEITSCHRIFT FUR METEOROLOGIE, 1984, 34 (01): : 22 - 34
  • [3] Accurate discretization of advection-diffusion equations
    Grima, R.
    Newman, T.J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2): : 036703 - 1
  • [4] Accurate discretization of advection-diffusion equations
    Grima, R
    Newman, TJ
    PHYSICAL REVIEW E, 2004, 70 (03):
  • [5] Effect of space discretization on the parareal algorithm for advection-diffusion equations
    Zeng, Xianfu
    Song, Haiyan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 233 : 330 - 340
  • [6] Numerical Studies of Three-dimensional Stochastic Darcy's Equation and Stochastic Advection-Diffusion-Dispersion Equation
    Lin, G.
    Tartakovsky, A. M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 43 (01) : 92 - 117
  • [7] Numerical Studies of Three-dimensional Stochastic Darcy’s Equation and Stochastic Advection-Diffusion-Dispersion Equation
    G. Lin
    A. M. Tartakovsky
    Journal of Scientific Computing, 2010, 43 : 92 - 117
  • [8] Numeric solution of advection-diffusion equations by a discrete time random walk scheme
    Angstmann, Christopher N.
    Henry, Bruce, I
    Jacobs, Byron A.
    McGann, Anna, V
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (03) : 680 - 704
  • [9] Numerical Simulation of the Fractional Dispersion Advection Equations Based on the Lattice Boltzmann Model
    Wang, Boyu
    Zhang, Jianying
    Yan, Guangwu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [10] Efficient time discretization scheme for nonlinear space fractional reaction-diffusion equations
    Iyiola, O. S.
    Asante-Asamani, E. O.
    Furati, K. M.
    Khaliq, A. Q. M.
    Wade, B. A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1274 - 1291