Generative Adversarial Networks for spot weld design

被引:1
|
作者
Gerlach, Tobias [1 ]
Eggink, Derk H. D. [2 ]
机构
[1] Reutlingen Univ, Mercedes Benz AG, Stuttgart, Germany
[2] Mercedes Benz AG, IT Dev Mercedes Benz Vans, Stuttgart, Germany
关键词
joining elements; machine learning; spot welding; engineering; automation; geometry; GAN; generative adversary network; neural networks; design; artificial intelligence;
D O I
10.1109/ETFA45728.2021.9613282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Joining element and assembly design remain largely a manual process. This increases risks of more costly and longer development trajectories. Current automation solutions do not consider historical data and traditional machine learning approaches have limitations. Meanwhile, generative adversary networks became benchmark methodologies to perform generation tasks in computer vision. Products in manufacturing industry may contain thousands of spot welds, thus design automation enables engineers to focus on their core competencies. This work presents a methodology to predict spot weld locations using generative adversarial networks. A 2D-based approach implements a variant of StarGAN_v2 to predict locations. It uses domain-based prediction concepts that integrate clustering of geometrical and product manufacturing information, as well as reference guided style generation. Results indicate that generative adversarial networks can predict spot weld positions based on 2D image data.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Graphical Generative Adversarial Networks
    Li, Chongxuan
    Welling, Max
    Zhu, Jun
    Zhang, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [32] Triangle Generative Adversarial Networks
    Gan, Zhe
    Chen, Liqun
    Wang, Weiyao
    Pu, Yunchen
    Zhang, Yizhe
    Liu, Hao
    Li, Chunyuan
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [33] Evolutionary Generative Adversarial Networks
    Wang, Chaoyue
    Xu, Chang
    Yao, Xin
    Tao, Dacheng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) : 921 - 934
  • [34] A Review on Generative Adversarial Networks
    Yuan, Yiqin
    Guo, Yuhao
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 392 - 401
  • [35] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173
  • [36] Constrained Generative Adversarial Networks
    Chao, Xiaopeng
    Cao, Jiangzhong
    Lu, Yuqin
    Dai, Qingyun
    Liang, Shangsong
    IEEE ACCESS, 2021, 9 : 19208 - 19218
  • [37] Quantum generative adversarial networks
    Dallaire-Demers, Pierre-Luc
    Killoran, Nathan
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [38] Structured Generative Adversarial Networks
    Deng, Zhijie
    Zhang, Hao
    Liang, Xiaodan
    Yang, Luona
    Xu, Shizhen
    Zhu, Jun
    Xing, Eric P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [39] Generative Adversarial Networks in Cardiology
    Skandarani, Youssef
    Lalande, Alain
    Afilalo, Jonathan
    Jodoin, Pierre-Marc
    CANADIAN JOURNAL OF CARDIOLOGY, 2022, 38 (02) : 196 - 203
  • [40] A Review: Generative Adversarial Networks
    Gonog, Liang
    Zhou, Yimin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 505 - 510