Quantum generative adversarial networks

被引:231
|
作者
Dallaire-Demers, Pierre-Luc [1 ]
Killoran, Nathan [1 ]
机构
[1] Xanadu, 372 Richmond St W, Toronto, ON M5V 1X6, Canada
关键词
MOLECULES;
D O I
10.1103/PhysRevA.98.012324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradientsa key element in generative adversarial network trainingusing another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Entangling Quantum Generative Adversarial Networks
    Niu, Murphy Yuezhen
    Zlokapa, Alexander
    Broughton, Michael
    Boixo, Sergio
    Mohseni, Masoud
    Smelyanskyi, Vadim
    Neven, Hartmut
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (22)
  • [2] Hamiltonian quantum generative adversarial networks
    Kim, Leeseok
    Lloyd, Seth
    Marvian, Milad
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [3] Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry
    Kao, Po-Yu
    Yang, Ya-Chu
    Chiang, Wei-Yin
    Hsiao, Jen-Yueh
    Cao, Yudong
    Aliper, Alex
    Ren, Feng
    Aspuru-Guzik, Alan
    Zhavoronkov, Alex
    Hsieh, Min-Hsiu
    Lin, Yen-Chu
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (11) : 3307 - 3318
  • [4] Impact of quantum noise on the training of quantum Generative Adversarial Networks
    Borras, Kerstin
    Chang, Su Yeon
    Funcke, Lena
    Grossi, Michele
    Hartung, Tobias
    Jansen, Karl
    Kruecker, Dirk
    Kuhn, Stefan
    Rehm, Florian
    Tueysuez, Cenk
    Vallecorsa, Sofia
    [J]. 20TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2023, 2438
  • [5] Anomaly detection with variational quantum generative adversarial networks
    Herr, Daniel
    Obert, Benjamin
    Rosenkranz, Matthias
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
  • [6] Optimized Quantum Generative Adversarial Networks for Distribution Loading
    Agliardi, Gabriele
    Prati, Enrico
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 824 - 827
  • [7] Experimental Quantum Generative Adversarial Networks for Image Generation
    Huang, He-Liang
    Du, Yuxuan
    Gong, Ming
    Zhao, Youwei
    Wu, Yulin
    Wang, Chaoyue
    Li, Shaowei
    Liang, Futian
    Lin, Jin
    Xu, Yu
    Yang, Rui
    Liu, Tongliang
    Hsich, Min-Hsiu
    Deng, Hui
    Rong, Hao
    Peng, Cheng-Zhi
    Lu, Chao-Yang
    Chen, Yu-Ao
    Tao, Dacheng
    Zhu, Xiaobo
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [8] A Survey of Recent Advances in Quantum Generative Adversarial Networks
    Ngo, Tuan. A. A.
    Nguyen, Tuyen
    Thang, Truong Cong
    [J]. ELECTRONICS, 2023, 12 (04)
  • [9] Quantum generative adversarial networks with multiple superconducting qubits
    Kaixuan Huang
    Zheng-An Wang
    Chao Song
    Kai Xu
    Hekang Li
    Zhen Wang
    Qiujiang Guo
    Zixuan Song
    Zhi-Bo Liu
    Dongning Zheng
    Dong-Ling Deng
    H. Wang
    Jian-Guo Tian
    Heng Fan
    [J]. npj Quantum Information, 7
  • [10] Quantum State Tomography with Conditional Generative Adversarial Networks
    Ahmed, Shahnawaz
    Sanchez Munoz, Carlos
    Nori, Franco
    Kockum, Anton Frisk
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (14)