Generative Adversarial Networks for spot weld design

被引:1
|
作者
Gerlach, Tobias [1 ]
Eggink, Derk H. D. [2 ]
机构
[1] Reutlingen Univ, Mercedes Benz AG, Stuttgart, Germany
[2] Mercedes Benz AG, IT Dev Mercedes Benz Vans, Stuttgart, Germany
关键词
joining elements; machine learning; spot welding; engineering; automation; geometry; GAN; generative adversary network; neural networks; design; artificial intelligence;
D O I
10.1109/ETFA45728.2021.9613282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Joining element and assembly design remain largely a manual process. This increases risks of more costly and longer development trajectories. Current automation solutions do not consider historical data and traditional machine learning approaches have limitations. Meanwhile, generative adversary networks became benchmark methodologies to perform generation tasks in computer vision. Products in manufacturing industry may contain thousands of spot welds, thus design automation enables engineers to focus on their core competencies. This work presents a methodology to predict spot weld locations using generative adversarial networks. A 2D-based approach implements a variant of StarGAN_v2 to predict locations. It uses domain-based prediction concepts that integrate clustering of geometrical and product manufacturing information, as well as reference guided style generation. Results indicate that generative adversarial networks can predict spot weld positions based on 2D image data.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A Review on Generative Adversarial Networks
    De Silva, Dilum Maduranga
    Poravi, Guhanathan
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [42] Optoelectronic generative adversarial networks
    Jumin Qiu
    Ganqing Lu
    Tingting Liu
    Dejian Zhang
    Shuyuan Xiao
    Tianbao Yu
    Communications Physics, 8 (1)
  • [43] Slimmable Generative Adversarial Networks
    Hou, Liang
    Yuan, Zehuan
    Huang, Lei
    Shen, Huawei
    Cheng, Xueqi
    Wang, Changhu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7746 - 7753
  • [44] Generative Adversarial Networks Quantization
    Mitrofanov, E.
    Grishkin, V.
    PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (03) : 563 - 565
  • [45] Coupled Generative Adversarial Networks
    Liu, Ming-Yu
    Tuzel, Oncel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [46] Generative Adversarial Networks An overview
    Creswell, Antonia
    White, Tom
    Dumoulin, Vincent
    Arulkumaran, Kai
    Sengupta, Biswa
    Bharath, Anil A.
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) : 53 - 65
  • [47] Generative Adversarial Networks for Classification
    Israel, Steven A.
    Goldstein, J. H.
    Klein, Jeffrey S.
    Talamonti, James
    Tanner, Franklin
    Zabel, Shane
    Sallee, Philip A.
    McCoy, Lisa
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [48] Deconstructing Generative Adversarial Networks
    Zhu, Banghua
    Jiao, Jiantao
    Tse, David
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7155 - 7179
  • [49] LayoutGAN for Automated Layout Design in Graphic Design: An Application of Generative Adversarial Networks
    Liu, Sufen
    Zhou, Linzhi
    Informatica (Slovenia), 2025, 49 (10): : 73 - 84
  • [50] Range-Constrained Generative Adversarial Network: Design Synthesis Under Constraints Using Conditional Generative Adversarial Networks
    Nobari, Amin Heyrani
    Chen, Wei
    Ahmed, Faez
    JOURNAL OF MECHANICAL DESIGN, 2022, 144 (02)