Analyzing and reconciling colocalization and transcriptome-wide association studies from the perspective of inferential reproducibility

被引:17
|
作者
Hukku, Abhay [1 ]
Sampson, Matthew G. [2 ,3 ,4 ]
Luca, Francesca [5 ]
Pique-Regi, Roger [5 ]
Wen, Xiaoquan [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Boston Childrens Hosp, Div Nephrol, Boston, MA 02115 USA
[3] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[4] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[5] Wayne State Univ, Ctr Mol Med & Genet, Detroit, MI 48201 USA
关键词
COMPLEX; GENES; GWAS; EQTL;
D O I
10.1016/j.ajhg.2022.04.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transcriptome-wide association studies and colocalization analysis are popular computational approaches for integrating genetic-association data from molecular and complex traits. They show the unique ability to go beyond variant-level genetic-association evidence and implicate critical functional units, e.g., genes, in disease etiology. However, in practice, when the two approaches are applied to the same molecular and complex-trait data, the inference results can be markedly different. This paper systematically investigates the inferential reproducibility between the two approaches through theoretical derivation, numerical experiments, and analyses of four complex trait GWAS and GTEx eQTL data. We identify two classes of inconsistent inference results. We find that the first class of inconsistent results (i.e., genes with strong colocalization but weak transcriptome-wide association study [TWAS] signals) might suggest an interesting biological phenomenon, i.e., horizontal pleiotropy; thus, the two approaches are truly complementary. The inconsistency in the second class (i.e., genes with weak colocalization but strongTWAS signals) can be understood and effectively reconciled. To this end, we propose a computational approach for locus-level colocalization analysis. We demonstrate that the joint TWAS and locus-level colocalization analysis improves specificity and sensitivity for implicating biologically relevant genes.
引用
收藏
页码:825 / 837
页数:13
相关论文
共 50 条
  • [31] A TRANSCRIPTOME-WIDE ASSOCIATION STUDY OF MISMATCH NEGATIVITY
    Bhat, Anjali
    Irizar, Aritz
    Pain, Oliver
    Thygesen, Johan
    Harju-Seppanen, Jasmine
    Austin-Zimmerman, Isabelle
    Wang, Baihan
    Zartaloudi, Eirini
    Calafato, Stella
    Friston, Karl
    Adams, Rick
    Kuchenbaecker, Karoline
    Hall, Mei-Hua
    Bramon, Elvira
    Hong, Elliot
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S188 - S188
  • [32] Transcriptome-wide association studies: recent advances in methods, applications and available databases
    Jialin Mai
    Mingming Lu
    Qianwen Gao
    Jingyao Zeng
    Jingfa Xiao
    Communications Biology, 6
  • [33] Transcriptome-wide association studies: recent advances in methods, applications and available databases
    Mai, Jialin
    Lu, Mingming
    Gao, Qianwen
    Zeng, Jingyao
    Xiao, Jingfa
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [34] Multi-trait transcriptome-wide association studies with probabilistic Mendelian randomization
    Liu, Lu
    Zeng, Ping
    Xue, Fuzhong
    Yuan, Zhongshang
    Zhou, Xiang
    AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (02) : 240 - 256
  • [35] Transcriptome-wide association studies associated with Crohn’s disease: challenges and perspectives
    Keyu Jia
    Jun Shen
    Cell & Bioscience, 14
  • [36] A Framework for Transcriptome-Wide Association Studies in Breast Cancer in Diverse Study Populations
    Bhattacharya, Arjun
    Garcia-Closas, Montserrat
    Olshan, Andrew
    Perou, Charles M.
    Troester, Melissa
    Love, Michael I.
    GENETIC EPIDEMIOLOGY, 2019, 43 (07) : 866 - 867
  • [37] A framework for transcriptome-wide association studies in breast cancer in diverse study populations
    Bhattacharya, Arjun
    Garcia-Closas, Montserrat
    Olshan, Andrew F.
    Perou, Charles M.
    Troester, Melissa A.
    Love, Michael I.
    GENOME BIOLOGY, 2020, 21 (01)
  • [38] Transcriptome-wide association studies associated with Crohn's disease: challenges and perspectives
    Jia, Keyu
    Shen, Jun
    CELL AND BIOSCIENCE, 2024, 14 (01):
  • [39] A framework for transcriptome-wide association studies in breast cancer in diverse study populations
    Bhattacharya, Arjun
    Garcia-Closas, Montserrat
    Olshan, Andrew F.
    Perou, Charles M.
    Troester, Melissa A.
    Love, Michael, I
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2020, 29 (06)
  • [40] A framework for transcriptome-wide association studies in breast cancer in diverse study populations
    Arjun Bhattacharya
    Montserrat García-Closas
    Andrew F. Olshan
    Charles M. Perou
    Melissa A. Troester
    Michael I. Love
    Genome Biology, 21