Analyzing and reconciling colocalization and transcriptome-wide association studies from the perspective of inferential reproducibility

被引:17
|
作者
Hukku, Abhay [1 ]
Sampson, Matthew G. [2 ,3 ,4 ]
Luca, Francesca [5 ]
Pique-Regi, Roger [5 ]
Wen, Xiaoquan [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Boston Childrens Hosp, Div Nephrol, Boston, MA 02115 USA
[3] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[4] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[5] Wayne State Univ, Ctr Mol Med & Genet, Detroit, MI 48201 USA
关键词
COMPLEX; GENES; GWAS; EQTL;
D O I
10.1016/j.ajhg.2022.04.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transcriptome-wide association studies and colocalization analysis are popular computational approaches for integrating genetic-association data from molecular and complex traits. They show the unique ability to go beyond variant-level genetic-association evidence and implicate critical functional units, e.g., genes, in disease etiology. However, in practice, when the two approaches are applied to the same molecular and complex-trait data, the inference results can be markedly different. This paper systematically investigates the inferential reproducibility between the two approaches through theoretical derivation, numerical experiments, and analyses of four complex trait GWAS and GTEx eQTL data. We identify two classes of inconsistent inference results. We find that the first class of inconsistent results (i.e., genes with strong colocalization but weak transcriptome-wide association study [TWAS] signals) might suggest an interesting biological phenomenon, i.e., horizontal pleiotropy; thus, the two approaches are truly complementary. The inconsistency in the second class (i.e., genes with weak colocalization but strongTWAS signals) can be understood and effectively reconciled. To this end, we propose a computational approach for locus-level colocalization analysis. We demonstrate that the joint TWAS and locus-level colocalization analysis improves specificity and sensitivity for implicating biologically relevant genes.
引用
收藏
页码:825 / 837
页数:13
相关论文
共 50 条
  • [21] Harmony in transcripts: a systematic literature review of transcriptome-wide association studies
    Mashhour, Mahinaz A.
    Kandil, Ahmed Hisham
    AbdElwahed, Manal
    Mabrouk, Mai S.
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [22] Disentangling genetic feature selection and aggregation in transcriptome-wide association studies
    Cao, Chen
    Kossinna, Pathum
    Kwok, Devin
    Li, Qing
    He, Jingni
    Su, Liya
    Guo, Xingyi
    Zhang, Qingrun
    Long, Quan
    GENETICS, 2022, 220 (02)
  • [23] Disentangling Genetic Feature Selection and Aggregation in Transcriptome-Wide Association Studies
    Cao, Chen
    Kwok, Devin
    Li, Qing
    He, Jingni
    Guo, Xingyi
    Zhang, Qingrun
    Long, Quan
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 771 - 772
  • [24] A powerful fine-mapping method for transcriptome-wide association studies
    Chong Wu
    Wei Pan
    Human Genetics, 2020, 139 : 199 - 213
  • [25] Multi-omic strategies for transcriptome-wide prediction and association studies
    Bhattacharya, Arjun
    Santos, Hudson J.
    Love, Michael I.
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 470 - 471
  • [26] Integrative approaches for large-scale transcriptome-wide association studies
    Alexander Gusev
    Arthur Ko
    Huwenbo Shi
    Gaurav Bhatia
    Wonil Chung
    Brenda W J H Penninx
    Rick Jansen
    Eco J C de Geus
    Dorret I Boomsma
    Fred A Wright
    Patrick F Sullivan
    Elina Nikkola
    Marcus Alvarez
    Mete Civelek
    Aldons J Lusis
    Terho Lehtimäki
    Emma Raitoharju
    Mika Kähönen
    Ilkka Seppälä
    Olli T Raitakari
    Johanna Kuusisto
    Markku Laakso
    Alkes L Price
    Päivi Pajukanta
    Bogdan Pasaniuc
    Nature Genetics, 2016, 48 : 245 - 252
  • [27] Integrative approaches for large-scale transcriptome-wide association studies
    Gusev, Alexander
    Ko, Arthur
    Shi, Huwenbo
    Bhatia, Gaurav
    Chung, Wonil
    Penninx, Brenda W. J. H.
    Jansen, Rick
    de Geus, Eco J. C.
    Boomsma, Dorret I.
    Wright, Fred A.
    Sullivan, Patrick F.
    Nikkola, Elina
    Alvarez, Marcus
    Civelek, Mete
    Lusis, Aldons J.
    Lehtimaki, Terho
    Raitoharju, Emma
    Kahonen, Mika
    Seppala, Ilkka
    Raitakari, Olli T.
    Kuusisto, Johanna
    Laakso, Markku
    Price, Alkes L.
    Pajukanta, Paivi
    Pasaniuc, Bogdan
    NATURE GENETICS, 2016, 48 (03) : 245 - 252
  • [28] A powerful fine-mapping method for transcriptome-wide association studies
    Wu, Chong
    Pan, Wei
    HUMAN GENETICS, 2020, 139 (02) : 199 - 213
  • [29] MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies
    Bhattacharya, Arjun
    Li, Yun
    Love, Michael, I
    PLOS GENETICS, 2021, 17 (03):
  • [30] Editorial: Statistical methods for genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS) and their applications
    Shao, Mengting
    Zhang, Zilong
    Sun, Huiyan
    He, Jingni
    Wang, Juexin
    Zhang, Qingrun
    Cao, Chen
    FRONTIERS IN GENETICS, 2023, 14