A framework for transcriptome-wide association studies in breast cancer in diverse study populations

被引:51
|
作者
Bhattacharya, Arjun [1 ]
Garcia-Closas, Montserrat [2 ,3 ]
Olshan, Andrew F. [4 ,5 ]
Perou, Charles M. [5 ,6 ,7 ]
Troester, Melissa A. [4 ,7 ]
Love, Michael I. [1 ,6 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USA
[2] NCI, Div Canc Epidemiol & Genet, Bethesda, MD 20892 USA
[3] Inst Canc Res, Div Genet & Epidemiol, London, England
[4] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
[5] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27515 USA
[6] Univ N Carolina, Dept Genet, Chapel Hill, NC 27515 USA
[7] Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27515 USA
基金
美国国家卫生研究院;
关键词
Transcriptome-wide analysis (TWAS); Breast cancer; Expression quantitative trait loci (eQTL); Survival; Polygenic traits; RISK PREDICTION; DNA ELEMENTS; TRANS-EQTLS; SURVIVAL; VARIANTS; LOCI; POLYMORPHISMS; HETEROGENEITY; HERITABILITY; ENCYCLOPEDIA;
D O I
10.1186/s13059-020-1942-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background The relationship between germline genetic variation and breast cancer survival is largely unknown, especially in understudied minority populations who often have poorer survival. Genome-wide association studies (GWAS) have interrogated breast cancer survival but often are underpowered due to subtype heterogeneity and clinical covariates and detect loci in non-coding regions that are difficult to interpret. Transcriptome-wide association studies (TWAS) show increased power in detecting functionally relevant loci by leveraging expression quantitative trait loci (eQTLs) from external reference panels in relevant tissues. However, ancestry- or race-specific reference panels may be needed to draw correct inference in ancestrally diverse cohorts. Such panels for breast cancer are lacking. Results We provide a framework for TWAS for breast cancer in diverse populations, using data from the Carolina Breast Cancer Study (CBCS), a population-based cohort that oversampled black women. We perform eQTL analysis for 406 breast cancer-related genes to train race-stratified predictive models of tumor expression from germline genotypes. Using these models, we impute expression in independent data from CBCS and TCGA, accounting for sampling variability in assessing performance. These models are not applicable across race, and their predictive performance varies across tumor subtype. Within CBCS (N = 3,828), at a false discovery-adjusted significance of 0.10 and stratifying for race, we identify associations in black women near AURKA, CAPN13, PIK3CA, and SERPINB5 via TWAS that are underpowered in GWAS. Conclusions We show that carefully implemented and thoroughly validated TWAS is an efficient approach for understanding the genetics underpinning breast cancer outcomes in diverse populations.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A framework for transcriptome-wide association studies in breast cancer in diverse study populations
    Bhattacharya, Arjun
    Garcia-Closas, Montserrat
    Olshan, Andrew F.
    Perou, Charles M.
    Troester, Melissa A.
    Love, Michael, I
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2020, 29 (06)
  • [2] A framework for transcriptome-wide association studies in breast cancer in diverse study populations
    Arjun Bhattacharya
    Montserrat García-Closas
    Andrew F. Olshan
    Charles M. Perou
    Melissa A. Troester
    Michael I. Love
    Genome Biology, 21
  • [3] A Framework for Transcriptome-Wide Association Studies in Breast Cancer in Diverse Study Populations
    Bhattacharya, Arjun
    Garcia-Closas, Montserrat
    Olshan, Andrew
    Perou, Charles M.
    Troester, Melissa
    Love, Michael I.
    GENETIC EPIDEMIOLOGY, 2019, 43 (07) : 866 - 867
  • [4] MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer
    Song, Xiaoyu
    Ji, Jiayi
    Rothstein, Joseph H.
    Alexeeff, Stacey E.
    Sakoda, Lori C.
    Sistig, Adriana
    Achacoso, Ninah
    Jorgenson, Eric
    Whittemore, Alice S.
    Klein, Robert J.
    Habel, Laurel A.
    Wang, Pei
    Sieh, Weiva
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer
    Xiaoyu Song
    Jiayi Ji
    Joseph H. Rothstein
    Stacey E. Alexeeff
    Lori C. Sakoda
    Adriana Sistig
    Ninah Achacoso
    Eric Jorgenson
    Alice S. Whittemore
    Robert J. Klein
    Laurel A. Habel
    Pei Wang
    Weiva Sieh
    Nature Communications, 14
  • [6] Transcriptome-wide association study of prostate cancer risk
    Chen, Maxine
    Gusev, Alexander
    Loda, Massimo
    Mucci, Lorelei A.
    Stampfer, Meir J.
    Kraft, Peter
    Penney, Kathryn L.
    CANCER RESEARCH, 2017, 77
  • [7] Transcriptome-wide association study of breast cancer risk by estrogen-receptor status
    Feng, Helian
    Gusev, Alexander
    Pasaniuc, Bogdan
    Wu, Lang
    Long, Jirong
    Abu-full, Zomoroda
    Aittomaki, Kristiina
    Andrulis, Irene L.
    Anton-Culver, Hoda
    Antoniou, Antonis C.
    Arason, Adalgeir
    Arndt, Volker
    Aronson, Kristan J.
    Arun, Banu K.
    Asseryanis, Ella
    Auer, Paul L.
    Azzollini, Jacopo
    Balmana, Judith
    Barkardottir, Rosa B.
    Barnes, Daniel R.
    Barrowdale, Daniel
    Beckmann, Matthias W.
    Behrens, Sabine
    Benitez, Javier
    Bermisheva, Marina
    Bialkowska, Katarzyna
    Blanco, Ana
    Blomqvist, Carl
    Boeckx, Bram
    Bogdanova, Natalia V.
    Bojesen, Stig E.
    Bolla, Manjeet K.
    Bonanni, Bernardo
    Borg, Ake
    Brauch, Hiltrud
    Brenner, Hermann
    Briceno, Ignacio
    Broeks, Annegien
    Bruening, Thomas
    Burwinkel, Barbara
    Cai, Qiuyin
    Caldes, Trinidad
    Caligo, Maria A.
    Campbell, Ian
    Canisius, Sander
    Campa, Daniele
    Carter, Brian D.
    Carter, Jonathan
    Castelao, Jose E.
    Chang-Claude, Jenny
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 442 - 468
  • [8] Opportunities and challenges for transcriptome-wide association studies
    Wainberg, Michael
    Sinnott-Armstrong, Nasa
    Mancuso, Nicholas
    Barbeira, Alvaro N.
    Knowles, David A.
    Golan, David
    Ermel, Raili
    Ruusalepp, Arno
    Quertermous, Thomas
    Hao, Ke
    Bjorkegren, Johan L. M.
    Im, Hae Kyung
    Pasaniuc, Bogdan
    Rivas, Manuel A.
    Kundaje, Anshul
    NATURE GENETICS, 2019, 51 (04) : 592 - 599
  • [9] RECONSIDERING THE VALIDITY OF TRANSCRIPTOME-WIDE ASSOCIATION STUDIES
    de Leeuw, Christiaan
    Werme, Josefin
    Savage, Jeanne
    Peyrot, Wouter
    Posthuma, Danielle
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2021, 51 : E82 - E82
  • [10] Opportunities and challenges for transcriptome-wide association studies
    Michael Wainberg
    Nasa Sinnott-Armstrong
    Nicholas Mancuso
    Alvaro N. Barbeira
    David A. Knowles
    David Golan
    Raili Ermel
    Arno Ruusalepp
    Thomas Quertermous
    Ke Hao
    Johan L. M. Björkegren
    Hae Kyung Im
    Bogdan Pasaniuc
    Manuel A. Rivas
    Anshul Kundaje
    Nature Genetics, 2019, 51 : 592 - 599