Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

被引:32
|
作者
Huwer, J. [1 ]
Stevenson, R. M. [1 ]
Skiba-Szymanska, J. [1 ]
Ward, M. B. [1 ]
Shields, A. J. [1 ]
Felle, M. [1 ,2 ]
Farrer, I. [3 ,4 ]
Ritchie, D. A. [3 ]
Penty, R. V. [2 ]
机构
[1] Toshiba Res Europe Ltd, Cambridge Res Lab, 208 Cambridge Sci Pk,Milton Rd, Cambridge CB4 0GZ, England
[2] Univ Cambridge, Ctr Adv Photon & Elect, JJ Thomson Ave, Cambridge CB3 0FA, England
[3] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
来源
PHYSICAL REVIEW APPLIED | 2017年 / 8卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
KEY DISTRIBUTION; TELEPORTATION; CRYPTOGRAPHY; PHOTONS; STATE; FIBER;
D O I
10.1103/PhysRevApplied.8.024007
中图分类号
O59 [应用物理学];
学科分类号
摘要
The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Enhancing the excitation gap of a quantum-dot-based Kitaev chain
    Liu, Chun-Xiao
    Bozkurt, A. Mert
    Zatelli, Francesco
    ten Haaf, Sebastiaan L. D.
    Dvir, Tom
    Wimmer, Michael
    COMMUNICATIONS PHYSICS, 2024, 7 (01):
  • [22] Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and Biological Detection
    Yue, Zhao
    Lisdat, Fred
    Parak, Wolfgan J.
    Hickey, Stephen G.
    Tu, Liping
    Sabir, Nadeem
    Dorfs, Dirk
    Bigall, Nadja C.
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) : 2800 - 2814
  • [23] Indirect Coupling in a Cluster of Quantum-Dot-Based Charge Qubits
    Tsukanov, Alexander V.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (09) : 1727 - 1736
  • [24] Quantum-dot-based integrated non-linear sources
    Bernard, Alice
    Mariani, Silvia
    Andronico, Alessio
    Gerard, Jean-Michel
    Kamp, Martin
    Jepsen, Peter-Uhd
    Leo, Giuseppe
    IET OPTOELECTRONICS, 2015, 9 (02) : 82 - 87
  • [25] A Quantum-Dot-Based Molecular Ruler for Multiplexed Optical Analysis
    Morgner, Frank
    Geissler, Daniel
    Stufler, Stefan
    Butlin, Nathaniel G.
    Loehmannsroeben, Hans-Gerd
    Hildebrandt, Niko
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (41) : 7570 - 7574
  • [26] Quantum-Dot-Based Aptamer Beacons for K+ Detection
    Wu, Tsai-Chin
    Zhao, Guijun
    Lu, Hui
    Dutta, Mitra
    Stroscio, Michael A.
    IEEE SENSORS JOURNAL, 2013, 13 (05) : 1549 - 1553
  • [27] Quantum-Dot-Based FRET Detection of Histone Acetyltransferase Activity
    Ghadiali, James E.
    Lowe, Stuart B.
    Stevens, Molly M.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (15) : 3417 - 3420
  • [28] Polarization properties of quantum-dot-based single photon sources
    Han Shuo
    Hao Zhi-Biao
    Luo Yi
    CHINESE PHYSICS LETTERS, 2007, 24 (07) : 2101 - 2104
  • [29] Quantum-Dot-Based Advanced Photonic Devices and Its Applications
    Matsumoto, A.
    Akahane, K.
    Umezawa, T.
    Kita, T.
    Utaka, K.
    Yamamoto, N.
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [30] Quantum-Dot-Based (Aero)gels: Control of the Optical Properties
    Wolf, Andre
    Lesnyak, Vladimir
    Gaponik, Nikolai
    Eychmueller, Alexander
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (16): : 2188 - 2193