Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

被引:32
|
作者
Huwer, J. [1 ]
Stevenson, R. M. [1 ]
Skiba-Szymanska, J. [1 ]
Ward, M. B. [1 ]
Shields, A. J. [1 ]
Felle, M. [1 ,2 ]
Farrer, I. [3 ,4 ]
Ritchie, D. A. [3 ]
Penty, R. V. [2 ]
机构
[1] Toshiba Res Europe Ltd, Cambridge Res Lab, 208 Cambridge Sci Pk,Milton Rd, Cambridge CB4 0GZ, England
[2] Univ Cambridge, Ctr Adv Photon & Elect, JJ Thomson Ave, Cambridge CB3 0FA, England
[3] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
来源
PHYSICAL REVIEW APPLIED | 2017年 / 8卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
KEY DISTRIBUTION; TELEPORTATION; CRYPTOGRAPHY; PHOTONS; STATE; FIBER;
D O I
10.1103/PhysRevApplied.8.024007
中图分类号
O59 [应用物理学];
学科分类号
摘要
The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Multifunctional quantum-dot-based magnetic chitosan nanobeads
    Tan, WB
    Zhang, Y
    ADVANCED MATERIALS, 2005, 17 (19) : 2375 - +
  • [12] Semiconductor model for quantum-dot-based microcavity lasers
    Gies, Christopher
    Wiersig, Jan
    Lorke, Michael
    Jahnke, Frank
    PHYSICAL REVIEW A, 2007, 75 (01):
  • [13] Quantum-dot-based camera images two colors
    Greenwood, Michael A.
    PHOTONICS SPECTRA, 2007, 41 (11) : 32 - 33
  • [14] Quantum key distribution using a semiconductor quantum dot source emitting at a telecommunication wavelength
    Intallura, P. M.
    Ward, M. B.
    Karimov, O. Z.
    Yuan, Z. L.
    See, P.
    Shields, A. J.
    Atkinson, P.
    Ritchie, D. A.
    QUANTUM DOTS, PARTICLES, AND NANOCLUSTERS V, 2008, 6902
  • [15] Single Quantum-Dot-Based Aptameric Nanosensor for Cocaine
    Zhang, Chun-yang
    Johnson, Lawrence W.
    ANALYTICAL CHEMISTRY, 2009, 81 (08) : 3051 - 3055
  • [16] Occupancy calculations for quantum-dot-based memory devices
    Prada, M
    Harrison, P
    NEW JOURNAL OF PHYSICS, 2004, 6
  • [17] Quantum-Dot-Based Photon Emission and Media Conversion for Quantum Information Applications
    Kumano, H.
    Nakajima, H.
    Ekuni, S.
    Idutsu, Y.
    Sasakura, H.
    Suemune, I.
    ADVANCES IN MATHEMATICAL PHYSICS, 2010, 2010
  • [18] Quantum communication using single photons from a semiconductor quantum dot emitting at a telecommunication wavelength
    Intallura, P. M.
    Ward, M. B.
    Karimov, O. Z.
    Yuan, Z. L.
    See, P.
    Atkinson, P.
    Ritchie, D. A.
    Shields, A. J.
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2009, 11 (05):
  • [19] Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology
    Ravitej Uppu
    Leonardo Midolo
    Xiaoyan Zhou
    Jacques Carolan
    Peter Lodahl
    Nature Nanotechnology, 2021, 16 : 1308 - 1317
  • [20] Practical Guide to Quantum Phase Transitions in Quantum-Dot-Based Tunable Josephson Junctions
    Kadlecova, A.
    Zonda, M.
    Pokorny, V.
    Novotny, T.
    PHYSICAL REVIEW APPLIED, 2019, 11 (04):