A two-dimensional analytical model of homojunction GaAs BMFET structures

被引:7
|
作者
Bellone, S
Rinaldi, N
Vitale, GF
Cocorullo, G
Schweeger, G
Hartnagel, HL
机构
[1] UNIV NAPLES,DEPT ELECTR ENGN,NAPLES,ITALY
[2] UNIV CALABRIA,DEPT ELECTR ENGN,CALABRIA,ITALY
[3] TH DARMSTADT,INST HOCHFREQUENZTECH,D-6100 DARMSTADT,GERMANY
关键词
D O I
10.1016/0038-1101(96)00031-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The first analytical model of a GaAs-based Bipolar Mode FET (BMFET) device is presented. As a result of a reduced epilayer thickness, the bipolar operation of this class of devices is strongly affected by the transverse path of the drain current underneath the gate, which causes the gate region to be partly debiased. In this article a gate crowding model valid for such a device topology is proposed and then applied to develop an analytical model of the device. Comparison with experimental and numerical results shows clearly that the gate crowding causes a focusing of the drain current in the channel, which, in turn, leads the active area to depend strongly on bias conditions. The results demonstrate the potentiality of this model for an accurate prediction for influence of the geometrical and physical parameters on device performance. Copyright (C) 1996 Elsevier Science Ltd
引用
收藏
页码:1221 / 1229
页数:9
相关论文
共 50 条
  • [31] Two-dimensional organization of as clusters in GaAs
    Chaldyshev, VV
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2002, 88 (2-3): : 195 - 204
  • [32] Ferromagnetic Transition in GaAs/Mn/GaAs/InxGa1-xAs/GaAs Structures with a Two-Dimensional Hole Gas
    Pankov, M. A.
    Aronzon, B. A.
    Rylkov, V. V.
    Davydov, A. B.
    Meilikhov, E. Z.
    Farzetdinova, R. M.
    Pashaev, E. M.
    Chuev, M. A.
    Subbotin, I. A.
    Likhachev, I. A.
    Zvonkov, B. N.
    Lashkul, A. V.
    Laiho, R.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2009, 109 (02) : 293 - 301
  • [33] A TWO-DIMENSIONAL ANALYTICAL RESOLUTION OF THE DIFFUSION EQUATION FOR SILICON-ON-INSULATOR STRUCTURES
    SWEID, I
    GUILLEMOT, N
    KAMARINOS, G
    REVUE DE PHYSIQUE APPLIQUEE, 1988, 23 (06): : 1111 - 1116
  • [34] A TWO-DIMENSIONAL ANALYTICAL SOLUTION OF THE DIFFUSION EQUATION FOR SILICON-ON-INSULATOR STRUCTURES
    SWEID, I
    GUILLEMOT, N
    KAMARINOS, G
    JOURNAL OF APPLIED PHYSICS, 1988, 63 (12) : 5633 - 5637
  • [35] Ferromagnetic transition in GaAs/Mn/GaAs/InxGa1 − xAs/GaAs structures with a two-dimensional hole gas
    M. A. Pankov
    B. A. Aronzon
    V. V. Rylkov
    A. B. Davydov
    E. Z. Meĭlikhov
    R. M. Farzetdinova
    É. M. Pashaev
    M. A. Chuev
    I. A. Subbotin
    I. A. Likhachev
    B. N. Zvonkov
    A. V. Lashkul
    R. Laiho
    Journal of Experimental and Theoretical Physics, 2009, 109 : 293 - 301
  • [36] Analytical calculation of two-dimensional spectra
    Bell, Joshua D.
    Conrad, Rebecca
    Siemens, Mark E.
    OPTICS LETTERS, 2015, 40 (07) : 1157 - 1160
  • [37] Quantification of two-dimensional structures generalized for OPC model verification
    Shi, Xuelong
    Chen, J. Fung
    Van Den Broeke, Doug
    Hsu, Stephen
    Hsu, Michael
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXI, PTS 1-3, 2007, 6518
  • [38] A note on the deformation behaviour of two-dimensional model cellular structures
    Prakash, O
    Bichebois, P
    Brechet, Y
    Louchet, F
    Embury, JD
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1996, 73 (03): : 739 - 751
  • [39] A model for piezo-resistive damping of two-dimensional structures
    Fein, Oliver M.
    JOURNAL OF SOUND AND VIBRATION, 2008, 310 (4-5) : 865 - 880
  • [40] Using two-dimensional structures to model filamentation in semiconductor devices
    Hower, P
    Pendharkar, S
    Steinhoff, R
    Brodsky, J
    Devore, J
    Grose, W
    ISPSD'01: PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES & ICS, 2001, : 385 - 388