On Mirabolic D-modules

被引:14
|
作者
Finkelberg, Michael [2 ,3 ]
Ginzburg, Victor [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] IITP, IMU, Moscow 101000, Russia
[3] State Univ Higher Sch Econ, Dept Math, Moscow 101000, Russia
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
DIFFERENTIAL-OPERATORS; VARIETIES;
D O I
10.1093/imrn/rnp216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let an algebraic group G act on X, a connected algebraic manifold, with finitely many orbits. For any Harish-Chandra pair (D, G) where D is a sheaf of twisted differential operators on X, we form a left ideal Dg subset of D generated by the Lie algebra g = Lie G. Then, D/Dg is a holonomic D-module, and its restriction to a unique Zariski open dense G-orbit in X is a G-equivariant local system. We prove a criterion saying that the D-module D/Dg is isomorphic, under certain (quite restrictive) conditions, to a direct image of that local system to X. We apply this criterion in the special case of the group G = SLn acting diagonally on X = B x B x Pn-1, where B denotes the flag manifold for SLn. We further relate D-modules on B x B x Pn-1 to D-modules on the Cartesian product SLn x Pn-1 via a pair (CH, HC), of adjoint functors analogous to those used in Lusztig's theory of character sheaves. A second important result of the paper provides an explicit description of these functors, showing that the functor HC gives an exact functor on the abelian category of mirabolic D-modules.
引用
收藏
页码:2947 / 2986
页数:40
相关论文
共 50 条
  • [41] EULERIAN GRADED D-MODULES
    Ma, Linquan
    Zhang, Wenliang
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (01) : 149 - 167
  • [42] VANISHING CYCLES OF D-MODULES
    LAURENT, Y
    INVENTIONES MATHEMATICAE, 1993, 112 (03) : 491 - 539
  • [43] Wild twistor D-modules
    Sabbah, Claude
    ALGEBRAIC ANALYSIS AND AROUND: IN HONOR OF PROFESSOR MASAKI KAISHIWARA'S 60TH BIRTHDAY, 2009, 54 : 293 - 353
  • [44] On categories of equivariant D-modules
    Lorincz, Andras C.
    Walther, Uli
    ADVANCES IN MATHEMATICS, 2019, 351 : 429 - 478
  • [45] Irregular hypergeometric D-modules
    Fernandez-Fernandez, Maria-Cruz
    ADVANCES IN MATHEMATICS, 2010, 224 (05) : 1735 - 1764
  • [46] D-modules and Darboux transformations
    Berest, Y
    Kasman, A
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (03) : 279 - 294
  • [47] A localization algorithm for D-modules
    Oaku, T
    Takayama, N
    Walther, U
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) : 721 - 728
  • [48] D-modules and projective stacks
    El Haloui, Karim
    Rumynin, Dmitriy
    JOURNAL OF ALGEBRA, 2018, 502 : 515 - 537
  • [49] Fourier transform for D-modules
    Daia, L
    ANNALES DE L INSTITUT FOURIER, 2000, 50 (06) : 1891 - +
  • [50] D-MODULES IN DIMENSION 1
    Narvaez Macarro, L.
    ALGEBRAIC APPROACH TO DIFFERENTIAL EQUATIONS, 2010, : 1 - 51