On Mirabolic D-modules

被引:14
|
作者
Finkelberg, Michael [2 ,3 ]
Ginzburg, Victor [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] IITP, IMU, Moscow 101000, Russia
[3] State Univ Higher Sch Econ, Dept Math, Moscow 101000, Russia
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
DIFFERENTIAL-OPERATORS; VARIETIES;
D O I
10.1093/imrn/rnp216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let an algebraic group G act on X, a connected algebraic manifold, with finitely many orbits. For any Harish-Chandra pair (D, G) where D is a sheaf of twisted differential operators on X, we form a left ideal Dg subset of D generated by the Lie algebra g = Lie G. Then, D/Dg is a holonomic D-module, and its restriction to a unique Zariski open dense G-orbit in X is a G-equivariant local system. We prove a criterion saying that the D-module D/Dg is isomorphic, under certain (quite restrictive) conditions, to a direct image of that local system to X. We apply this criterion in the special case of the group G = SLn acting diagonally on X = B x B x Pn-1, where B denotes the flag manifold for SLn. We further relate D-modules on B x B x Pn-1 to D-modules on the Cartesian product SLn x Pn-1 via a pair (CH, HC), of adjoint functors analogous to those used in Lusztig's theory of character sheaves. A second important result of the paper provides an explicit description of these functors, showing that the functor HC gives an exact functor on the abelian category of mirabolic D-modules.
引用
收藏
页码:2947 / 2986
页数:40
相关论文
共 50 条
  • [21] Residues and filtered D-modules
    Christian Schnell
    Mathematische Annalen, 2012, 354 : 727 - 763
  • [22] Dwork families and D-modules
    Dominguez, Alberto Castano
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) : 1451 - 1484
  • [23] DIRECT IMAGES OF D-MODULES
    MALGRANGE, B
    MANUSCRIPTA MATHEMATICA, 1985, 50 (1-3) : 49 - 71
  • [24] Grassmann duality for D-modules
    Marastoni, C
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (04): : 459 - 491
  • [25] Mixed Twistor D-Modules
    Mochizuki, Takuro
    MIXED TWISTOR D-MODULES, 2015, 2125 : 169 - 194
  • [26] A LOCALIZATION THEOREM FOR D-MODULES
    SAITO, M
    TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (02) : 213 - 234
  • [27] MODULAR INVARIANT D-MODULES
    Ichikawa, Takashi
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (01) : 9 - 12
  • [28] On irregular binomial D-modules
    María-Cruz Fernández-Fernández
    Francisco-Jesús Castro-Jiménez
    Mathematische Zeitschrift, 2012, 272 : 1321 - 1337
  • [29] Bivariate hypergeometric D-modules
    Dickenstein, A
    Matusevich, LF
    Sadykov, T
    ADVANCES IN MATHEMATICS, 2005, 196 (01) : 78 - 123
  • [30] Fe-modules with applications to D-modules
    Zhang, Wenliang
    JOURNAL OF ALGEBRA, 2023, 617 : 340 - 351