On Mirabolic D-modules

被引:14
|
作者
Finkelberg, Michael [2 ,3 ]
Ginzburg, Victor [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] IITP, IMU, Moscow 101000, Russia
[3] State Univ Higher Sch Econ, Dept Math, Moscow 101000, Russia
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
DIFFERENTIAL-OPERATORS; VARIETIES;
D O I
10.1093/imrn/rnp216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let an algebraic group G act on X, a connected algebraic manifold, with finitely many orbits. For any Harish-Chandra pair (D, G) where D is a sheaf of twisted differential operators on X, we form a left ideal Dg subset of D generated by the Lie algebra g = Lie G. Then, D/Dg is a holonomic D-module, and its restriction to a unique Zariski open dense G-orbit in X is a G-equivariant local system. We prove a criterion saying that the D-module D/Dg is isomorphic, under certain (quite restrictive) conditions, to a direct image of that local system to X. We apply this criterion in the special case of the group G = SLn acting diagonally on X = B x B x Pn-1, where B denotes the flag manifold for SLn. We further relate D-modules on B x B x Pn-1 to D-modules on the Cartesian product SLn x Pn-1 via a pair (CH, HC), of adjoint functors analogous to those used in Lusztig's theory of character sheaves. A second important result of the paper provides an explicit description of these functors, showing that the functor HC gives an exact functor on the abelian category of mirabolic D-modules.
引用
收藏
页码:2947 / 2986
页数:40
相关论文
共 50 条
  • [31] D-modules for Macaulay 2
    Leykin, A
    MATHEMATICAL SOFTWARE, PROCEEDINGS, 2002, : 169 - 179
  • [32] INTEGRAL GEOMETRY AND D-MODULES
    Goncharov, Alexander
    MATHEMATICAL RESEARCH LETTERS, 1995, 2 (04) : 415 - 435
  • [33] EXPONENTIAL POLYNOMIALS AND D-MODULES
    BERENSTEIN, CA
    YGER, A
    COMPOSITIO MATHEMATICA, 1995, 95 (02) : 131 - 181
  • [34] Darboux maps and D-modules
    Athorne, C
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 122 (02) : 135 - 139
  • [35] Quantum curves and D-modules
    Dijkgraaf, Robbert
    Hollands, Lotte
    Sulkowski, Piotr
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (11):
  • [36] Grassmann duality for D-modules
    Marastoni, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (10): : 929 - 933
  • [37] Wick Rotation for D-modules
    Schapira, Pierre
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (03)
  • [38] On completion of graded D-modules
    Switala, Nicholas
    Zhang, Wenliang
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (03) : 887 - 901
  • [39] The Boyarsky principle and D-modules
    Loeser, F
    MATHEMATISCHE ANNALEN, 1996, 306 (01) : 125 - 157
  • [40] Overholonomic arithmetic D-modules
    Caro, Daniel
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2009, 42 (01): : 141 - 192