On Mirabolic D-modules

被引:14
|
作者
Finkelberg, Michael [2 ,3 ]
Ginzburg, Victor [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] IITP, IMU, Moscow 101000, Russia
[3] State Univ Higher Sch Econ, Dept Math, Moscow 101000, Russia
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
DIFFERENTIAL-OPERATORS; VARIETIES;
D O I
10.1093/imrn/rnp216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let an algebraic group G act on X, a connected algebraic manifold, with finitely many orbits. For any Harish-Chandra pair (D, G) where D is a sheaf of twisted differential operators on X, we form a left ideal Dg subset of D generated by the Lie algebra g = Lie G. Then, D/Dg is a holonomic D-module, and its restriction to a unique Zariski open dense G-orbit in X is a G-equivariant local system. We prove a criterion saying that the D-module D/Dg is isomorphic, under certain (quite restrictive) conditions, to a direct image of that local system to X. We apply this criterion in the special case of the group G = SLn acting diagonally on X = B x B x Pn-1, where B denotes the flag manifold for SLn. We further relate D-modules on B x B x Pn-1 to D-modules on the Cartesian product SLn x Pn-1 via a pair (CH, HC), of adjoint functors analogous to those used in Lusztig's theory of character sheaves. A second important result of the paper provides an explicit description of these functors, showing that the functor HC gives an exact functor on the abelian category of mirabolic D-modules.
引用
收藏
页码:2947 / 2986
页数:40
相关论文
共 50 条
  • [1] Hamiltonian reduction and nearby cycles for mirabolic D-modules
    Bellamy, Gwyn
    Ginzburg, Victor
    ADVANCES IN MATHEMATICS, 2015, 269 : 71 - 161
  • [2] ALEXANDER MODULES AND D-MODULES
    SABBAH, C
    DUKE MATHEMATICAL JOURNAL, 1990, 60 (03) : 729 - 814
  • [3] Crystals and D-Modules
    Gaitsgory, Dennis
    Rozenblyum, Nick
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2014, 10 (01) : 57 - 154
  • [4] Residues and D-modules
    Björk, JE
    LEGACY OF NIELS HENRIK ABEL, 2004, : 605 - 651
  • [5] Morsification of D-modules
    Tráng, LD
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1998, 4 (02): : 229 - 248
  • [6] D-MODULES ON SUPERMANIFOLDS
    PENKOV, IB
    INVENTIONES MATHEMATICAE, 1983, 71 (03) : 501 - 512
  • [7] Factorizable D-modules
    Khoroshkin, S
    Schechtman, V
    MATHEMATICAL RESEARCH LETTERS, 1997, 4 (2-3) : 239 - 257
  • [8] BINOMIAL D-MODULES
    Dickenstein, Alicia
    Matusevich, Laura Felicia
    Miller, Ezra
    DUKE MATHEMATICAL JOURNAL, 2010, 151 (03) : 385 - 429
  • [9] Cusps and D-modules
    Ben-Zvi, D
    Nevins, T
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (01) : 155 - 179
  • [10] Multidegree for bifiltered D-modules
    Arcadias, Remi
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (02) : 280 - 295