OPTIMAL ARBITRAGE UNDER MODEL UNCERTAINTY

被引:24
|
作者
Fernholz, Daniel [1 ]
Karatzas, Ioannis [2 ]
机构
[1] Daniel Fernholz LLC, Austin, TX 78701 USA
[2] INTECH Investment Management, Princeton, NJ 08542 USA
来源
ANNALS OF APPLIED PROBABILITY | 2011年 / 21卷 / 06期
基金
美国国家科学基金会;
关键词
Robust portfolio choice; model uncertainty; arbitrage; fully nonlinear parabolic equations; minimal solutions; maximal containment probability; stochastic control; stochastic game; JACOBI-BELLMAN EQUATIONS; REGULARITY THEORY; DIFFUSION-PROCESSES; BLACK; EXISTENCE; PORTFOLIO; TIME;
D O I
10.1214/10-AAP755
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In an equity market model with "Knightian" uncertainty regarding the relative risk and covariance structure of its assets, we characterize in several ways the highest return relative to the market that can be achieved using nonanticipative investment rules over a given time horizon, and under any admissible configuration of model parameters that might materialize. One characterization is in terms of the smallest positive supersolution to a fully nonlinear parabolic partial differential equation of the Hamilton-Jacobi-Bellman type. Under appropriate conditions, this smallest supersolution is the value function of an associated stochastic control problem, namely, the maximal probability with which an auxiliary multidimensional diffusion process, controlled in a manner which affects both its drift and covariance structures, stays in the interior of the positive orthant through the end of the time-horizon. This value function is also characterized in terms of a stochastic game, and can be used to generate an investment rule that realizes such best possible outperformance of the market.
引用
收藏
页码:2191 / 2225
页数:35
相关论文
共 50 条
  • [1] Stability of no-arbitrage property under model uncertainty
    Ostrovski, Vladimir
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (01) : 89 - 92
  • [2] ON ARBITRAGE AND DUALITY UNDER MODEL UNCERTAINTY AND PORTFOLIO CONSTRAINTS
    Bayraktar, Erhan
    Zhou, Zhou
    [J]. MATHEMATICAL FINANCE, 2017, 27 (04) : 988 - 1012
  • [3] Viability and Arbitrage Under Knightian Uncertainty
    Burzoni, Matteo
    Riedel, Frank
    Soner, H. Mete
    [J]. ECONOMETRICA, 2021, 89 (03) : 1207 - 1234
  • [4] Optimal Dividends Under Model Uncertainty*
    Chakraborty, Prakash
    Cohen, Asaf
    Young, Virginia R.
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2023, 14 (02): : 497 - 524
  • [5] Optimal growth under model uncertainty
    Xu, Yuhong
    [J]. NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2022, 60
  • [6] Optimal Reinsurance and Dividend Under Model Uncertainty
    Liu, Jingzhen
    Wang, Yike
    Zhang, Ning
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2023, 36 (03) : 1116 - 1143
  • [7] Optimal Reinsurance and Dividend Under Model Uncertainty
    LIU Jingzhen
    WANG Yike
    ZHANG Ning
    [J]. Journal of Systems Science & Complexity, 2023, 36 (03) : 1116 - 1143
  • [8] Optimal Reinsurance and Dividend Under Model Uncertainty
    Jingzhen Liu
    Yike Wang
    Ning Zhang
    [J]. Journal of Systems Science and Complexity, 2023, 36 : 1116 - 1143
  • [9] Optimal consumption strategies under model uncertainty
    Burgert, Christian
    Ruschendorf, Ludger
    [J]. STATISTICS & RISK MODELING, 2005, 23 (01) : 1 - 14
  • [10] Arbitrage-free modeling under Knightian uncertainty
    Matteo Burzoni
    Marco Maggis
    [J]. Mathematics and Financial Economics, 2020, 14 : 635 - 659