OPTIMAL ARBITRAGE UNDER MODEL UNCERTAINTY

被引:24
|
作者
Fernholz, Daniel [1 ]
Karatzas, Ioannis [2 ]
机构
[1] Daniel Fernholz LLC, Austin, TX 78701 USA
[2] INTECH Investment Management, Princeton, NJ 08542 USA
来源
ANNALS OF APPLIED PROBABILITY | 2011年 / 21卷 / 06期
基金
美国国家科学基金会;
关键词
Robust portfolio choice; model uncertainty; arbitrage; fully nonlinear parabolic equations; minimal solutions; maximal containment probability; stochastic control; stochastic game; JACOBI-BELLMAN EQUATIONS; REGULARITY THEORY; DIFFUSION-PROCESSES; BLACK; EXISTENCE; PORTFOLIO; TIME;
D O I
10.1214/10-AAP755
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In an equity market model with "Knightian" uncertainty regarding the relative risk and covariance structure of its assets, we characterize in several ways the highest return relative to the market that can be achieved using nonanticipative investment rules over a given time horizon, and under any admissible configuration of model parameters that might materialize. One characterization is in terms of the smallest positive supersolution to a fully nonlinear parabolic partial differential equation of the Hamilton-Jacobi-Bellman type. Under appropriate conditions, this smallest supersolution is the value function of an associated stochastic control problem, namely, the maximal probability with which an auxiliary multidimensional diffusion process, controlled in a manner which affects both its drift and covariance structures, stays in the interior of the positive orthant through the end of the time-horizon. This value function is also characterized in terms of a stochastic game, and can be used to generate an investment rule that realizes such best possible outperformance of the market.
引用
收藏
页码:2191 / 2225
页数:35
相关论文
共 50 条
  • [21] Optimal model for multivariate water supply system under uncertainty
    Zhang, Xue-Hua
    Zhang, Hong-Wei
    Zhang, Bao-An
    Niu, Zhi-Guang
    Li, Ying
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2008, 41 (03): : 349 - 355
  • [22] ON OPTIMAL STRATEGIES FOR UTILITY MAXIMIZERS IN THE ARBITRAGE PRICING MODEL
    Rasonyi, Miklos
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2016, 19 (07)
  • [23] Statistical arbitrage under a fractal price model
    Xiang, Yun
    Deng, Shijie
    ANNALS OF OPERATIONS RESEARCH, 2024, 335 (01) : 425 - 439
  • [24] Universal arbitrage aggregator in discrete-time markets under uncertainty
    Matteo Burzoni
    Marco Frittelli
    Marco Maggis
    Finance and Stochastics, 2016, 20 : 1 - 50
  • [25] Universal arbitrage aggregator in discrete-time markets under uncertainty
    Burzoni, Matteo
    Frittelli, Marco
    Maggis, Marco
    FINANCE AND STOCHASTICS, 2016, 20 (01) : 1 - 50
  • [26] OPTIMAL REGULATION UNDER UNCERTAINTY
    MARSHALL, WJ
    YAWITZ, JB
    GREENBERG, E
    JOURNAL OF FINANCE, 1981, 36 (04): : 909 - 921
  • [27] OPTIMAL INVESTMENT UNDER UNCERTAINTY
    ABEL, AB
    AMERICAN ECONOMIC REVIEW, 1983, 73 (01): : 228 - 233
  • [28] OPTIMAL SAVINGS UNDER UNCERTAINTY
    LEVHARI, D
    SRINIVASAN, TN
    REVIEW OF ECONOMIC STUDIES, 1969, 36 (02): : 153 - 163
  • [29] OPTIMAL GROWTH UNDER UNCERTAINTY
    MIRMAN, LJ
    ZILCHA, I
    JOURNAL OF ECONOMIC THEORY, 1975, 11 (03) : 329 - 339
  • [30] Optimal clustering under uncertainty
    Dalton, Lori A.
    Benalcazar, Marco E.
    Dougherty, Edward R.
    PLOS ONE, 2018, 13 (10):