Arbitrage-free modeling under Knightian uncertainty

被引:0
|
作者
Matteo Burzoni
Marco Maggis
机构
[1] University of Milan,Department of Mathematics
来源
关键词
Knightian uncertainty; Arbitrage theory; First fundamental theorem of asset pricing; Quasi-sure analysis; C02; G10; G13;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Fundamental Theorem of Asset Pricing for a general financial market under Knightian Uncertainty. We adopt a functional analytic approach which requires neither specific assumptions on the class of priors P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} nor on the structure of the state space. Several aspects of modeling under Knightian Uncertainty are considered and analyzed. We show the need for a suitable adaptation of the notion of No Free Lunch with Vanishing Risk and discuss its relation to the choice of an appropriate technical filtration. In an abstract setup, we show that absence of arbitrage is equivalent to the existence of approximate martingale measures sharing the same polar set of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document}. We then specialize our results to a discrete-time financial market in order to obtain martingale measures.
引用
收藏
页码:635 / 659
页数:24
相关论文
共 50 条
  • [1] Arbitrage-free modeling under Knightian uncertainty
    Burzoni, Matteo
    Maggis, Marco
    [J]. MATHEMATICS AND FINANCIAL ECONOMICS, 2020, 14 (04) : 635 - 659
  • [2] Viability and Arbitrage Under Knightian Uncertainty
    Burzoni, Matteo
    Riedel, Frank
    Soner, H. Mete
    [J]. ECONOMETRICA, 2021, 89 (03) : 1207 - 1234
  • [3] Arbitrage-free XVA
    Bichuch, Maxim
    Capponi, Agostino
    Sturm, Stephan
    [J]. MATHEMATICAL FINANCE, 2018, 28 (02) : 582 - 620
  • [4] Haar extensions of arbitrage-free financial markets to markets that are complete and arbitrage-free
    Bogachëva, MN
    Pavlov, IV
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (03) : 581 - 583
  • [5] Characterization of arbitrage-free markets
    Strasser, E
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (1A): : 116 - 124
  • [6] From arbitrage to arbitrage-free implied volatilities
    Grzelak, Lech A.
    Oosterlee, Cornelis W.
    [J]. JOURNAL OF COMPUTATIONAL FINANCE, 2017, 20 (03) : 31 - 49
  • [7] REINSURANCE IN ARBITRAGE-FREE MARKETS
    SONDERMANN, D
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 1991, 10 (03): : 191 - 202
  • [8] ARBITRAGE-FREE SPREAD - RESPONSE
    HAYRE, LS
    [J]. JOURNAL OF PORTFOLIO MANAGEMENT, 1991, 17 (03): : 78 - 79
  • [9] Approximate arbitrage-free option pricing under the SABR model
    Yang, Nian
    Chen, Nan
    Liu, Yanchu
    Wan, Xiangwei
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2017, 83 : 198 - 214
  • [10] Arbitrage opportunities in arbitrage-free models of bond pricing
    Backus, D
    Foresi, S
    Zin, S
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1998, 16 (01) : 13 - 26