Optimal Reinsurance and Dividend Under Model Uncertainty

被引:1
|
作者
Liu, Jingzhen [1 ]
Wang, Yike [1 ]
Zhang, Ning [2 ]
机构
[1] Cent Univ Finance & Econ, China Inst Actuarial Sci, Beijing 100081, Peoples R China
[2] Cent Univ Finance & Econ, Sch Finance & Chinese Fintech Res Ctr, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-Jacobi-Bellman-Isaac equation; model uncertainty; optimal dividend; proportional reinsurance; ROBUST PORTFOLIO RULES; OPTIMAL INVESTMENT; DIFFUSION-MODEL; VISCOSITY SOLUTIONS; INSURANCE COMPANY; INSURER; PROBABILITY; STRATEGIES; POLICIES;
D O I
10.1007/s11424-023-1237-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors analyze the optimal reinsurance and dividend problem with model uncertainty for an insurer. Here the model uncertainty represents possible deviations between the real market and the assumed model. In addition to the incorporation of model uncertainty into the traditional diffusion surplus process, the authors include a penalty function in the objective function. The proposed goal is to find the optimal reinsurance and dividend strategy that maximizes the expected discounted dividend before ruin in the worst case of all possible scenarios, namely, the worst market. Using a dynamic programming approach, the problem is reduced to solving a Hamilton-Jacob-Bellman-Isaac (HJBI) equation with singular control. This problem is more difficult than the traditional robust control or singular control problem. Here, the authors prove that the value function is the unique solution to this HJBI equation with singular control. Moreover, the authors present a verification theorem when a smooth solution can be found, and derive closed-form solution when the function in the objective function is specified.
引用
收藏
页码:1116 / 1143
页数:28
相关论文
共 50 条
  • [1] Optimal Reinsurance and Dividend Under Model Uncertainty
    LIU Jingzhen
    WANG Yike
    ZHANG Ning
    [J]. Journal of Systems Science & Complexity, 2023, 36 (03) : 1116 - 1143
  • [2] Optimal Reinsurance and Dividend Under Model Uncertainty
    Jingzhen Liu
    Yike Wang
    Ning Zhang
    [J]. Journal of Systems Science and Complexity, 2023, 36 : 1116 - 1143
  • [3] ROBUST OPTIMAL DIVIDEND AND REINSURANCE UNDER MODEL UNCERTAINTY
    Zhao, Yongxia
    Gong, Xue
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024,
  • [4] OPTIMAL DIVIDEND AND REINSURANCE UNDER THRESHOLD STRATEGY
    Zhang, Jingxiao
    Liu, Sheng
    Kannan, D.
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2011, 20 (2-3): : 193 - 204
  • [5] Optimal investment, consumption and proportional reinsurance under model uncertainty
    Peng, Xingchun
    Chen, Fenge
    Hu, Yijun
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2014, 59 : 222 - 234
  • [6] Optimal reinsurance under risk and uncertainty
    Balbas, Alejandro
    Balbas, Beatriz
    Balbas, Raquel
    Heras, Antonio
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2015, 60 : 61 - 74
  • [7] Robust Dividend, Financing, and Reinsurance Strategies Under Model Uncertainty with Proportional Transaction Costs
    Guan, Guohui
    He, Lin
    Liang, Zongxia
    Liu, Yang
    Zhang, Litian
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2024, 28 (02) : 261 - 284
  • [8] Optimal Reinsurance and Dividend Strategies Under the Markov-Modulated Insurance Risk Model
    Wei, Jiaqin
    Yang, Hailiang
    Wang, Rongming
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2010, 28 (06) : 1078 - 1105
  • [9] OPTIMAL DIVIDEND STRATEGIES WITH REINSURANCE UNDER CONTAGIOUS SYSTEMIC RISK
    QIU, M. I. N. G.
    JIN, Z. H. U. O.
    LI, S. H. U. A. N. M. I. N. G.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (03) : 1269 - 1293
  • [10] Optimal proportional reinsurance model with dividend process and transaction costs
    Yang, RC
    Liu, KH
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (03): : 484 - 484