Classification of Electrical Impedance Tomography Data Using Machine Learning

被引:10
|
作者
Pessoa, Diogo [1 ]
Rocha, Bruno Machado [1 ]
Cheimariotis, Grigorios-Aris [2 ]
Haris, Kostas [2 ]
Strodthoff, Claas [3 ]
Kaimakamis, Evangelos [2 ,4 ]
Maglaveras, Nicos [2 ]
Frerichs, Inez [3 ]
de Carvalho, Paulo [1 ]
Paiva, Rui Pedro [1 ]
机构
[1] Univ Coimbra, Ctr Informat & Syst, Dept Informat Engn, P-3030290 Coimbra, Portugal
[2] Aristotle Univ Thessaloniki, Lab Comp Med Informat & Biomed Imaging Technol, Thessaloniki 54636, Greece
[3] Univ Med Ctr Schleswig Holstein, Dept Anesthesiol & Intens Care Med, Campus Kiel, Kiel, Germany
[4] G Papanikolaou Gen Hosp, Intens Care Unit 1, Thessaloniki, Greece
基金
欧盟地平线“2020”;
关键词
EIT; Machine Learning; Feature Engineering;
D O I
10.1109/EMBC46164.2021.9629961
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Patients suffering from pulmonary diseases typically exhibit pathological lung ventilation in terms of homogeneity. Electrical Impedance Tomography (EIT) is a non-invasive imaging method that allows to analyze and quantify the distribution of ventilation in the lungs. In this article, we present a new approach to promote the use of EIT data and the implementation of new clinical applications for differential diagnosis, with the development of several machine learning models to discriminate between EIT data from healthy and non-healthy subjects. EIT data from 16 subjects were acquired: 5 healthy and 11 non-healthy subjects (with multiple pulmonary conditions). Preliminary results have shown accuracy percentages of 66% in challenging evaluation scenarios. The results suggest that the pairing of EIT feature engineering methods with machine learning methods could be further explored and applied in the diagnostic and monitoring of patients suffering from lung diseases. Also, we introduce the use of a new feature in the context of EIT data analysis (Impedance Curve Correlation).
引用
收藏
页码:349 / 353
页数:5
相关论文
共 50 条
  • [1] Hybrid machine learning in electrical impedance tomography
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Guzik, Miroslaw
    Niderla, Konrad
    Lipski, Jerzy
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (12): : 169 - 172
  • [2] Piezoresistive nanocomposite sensing using electrical impedance tomography and machine learning
    Alawy, A.
    Mostaghimi, H.
    Amani, S.
    Rezvani, S.
    Park, S. S.
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 377
  • [3] Classification of Wood Chips Using Electrical Impedance Spectroscopy and Machine Learning
    Tiitta, Markku
    Tiitta, Valtteri
    Heikkinen, Jorma
    Lappalainen, Reijo
    Tomppo, Laura
    SENSORS, 2020, 20 (04)
  • [4] Classification of breast tumour using electrical impedance and machine learning techniques
    Al Amin, Abdullah
    Parvin, Shahnaj
    Kadir, M. A.
    Tahmid, Tasmia
    Alam, S. Kaisar
    Rabbani, K. Siddique-e
    PHYSIOLOGICAL MEASUREMENT, 2014, 35 (06) : 965 - 974
  • [5] ELECTRICAL IMPEDANCE TOMOGRAPHY, ENCLOSURE METHOD AND MACHINE LEARNING
    Siltanen, Samuli
    Ide, Takanori
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [6] Tactile Sensing Using Machine Learning-Driven Electrical Impedance Tomography
    Husain, Zainab
    Madjid, Nadya Abdel
    Liatsis, Panos
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11628 - 11642
  • [7] Object Analysis Using Machine Learning to Solve Inverse Problem in Electrical Impedance Tomography
    Rymarczyk, Tomasz
    Kozlowski, Edward
    Klosowski, Grzegorz
    2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 220 - 225
  • [8] Use of machine learning to diagnose breast cancer from raw electrical impedance tomography data
    Korjenevsky, A. V.
    BIOMEDICAL ENGINEERING, 2024, 58 (03) : 208 - 212
  • [9] Data-driven classification of ventilated lung tissues using electrical impedance tomography
    Gomez-Laberge, Camille
    Hogan, Matthew J.
    Elke, Gunnar
    Weiler, Norbert
    Frerichs, Inez
    Adler, Andy
    PHYSIOLOGICAL MEASUREMENT, 2011, 32 (07)
  • [10] Detection and Accurate Classification of Mixed Gases Using Machine Learning with Impedance Data
    Lee, Kookjin
    Nam, Sangjin
    Kim, Hyojun
    Jeon, Dae-Young
    Shin, Dongha
    Lim, Hyeong-Gyun
    Kim, Chulmin
    Kim, Doyoon
    Kim, Yeonsu
    Byeon, Sang-Hoon
    Kim, Gyu-Tae
    ADVANCED THEORY AND SIMULATIONS, 2020, 3 (07)