A note on weighted quadrature rules

被引:0
|
作者
Masjed-Jamei, Mohammad [1 ]
Area, Ivan [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16315-1618, Tehran, Iran
[2] Univ Vigo, EE De Telecomun, Dept Matemat Aplicada 2, Campus Lagoas Marcosende, Vigo 36310, Spain
基金
美国国家科学基金会;
关键词
changing the integration basis; Gaussian quadratures; extension of Gauss-Jacobi and Gauss-Laguerre rules; classical orthogonal polynomials; CLENSHAW-CURTIS TYPE; FORMULA;
D O I
10.1002/mma.3785
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is shown how to change the integration basis in some Gaussian (weighted) quadrature rules in order to obtain new quadrature models and improve classical results in the sequel. The main advantage of this approach is its simplicity, which can be implemented in any numerical integration package. Several remarkable numerical evidences are then given to show the advantage and efficiency of the proposed approach with respect to classical methods. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:6103 / 6113
页数:11
相关论文
共 50 条
  • [41] Quadrature rules and distribution of points on manifolds
    Brandolini, Luca
    Choirat, Christine
    Colzani, Leonardo
    Gigante, Giacomo
    Seri, Raffaello
    Travaglini, Giancarlo
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2014, 13 (04) : 889 - 923
  • [42] Interpolatory Quadrature Rules for Oscillatory Integrals
    Veerle Ledoux
    Marnix Van Daele
    Journal of Scientific Computing, 2012, 53 : 586 - 607
  • [43] Szego-Lobatto quadrature rules
    Jagels, Carl
    Reichel, Lothar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 116 - 126
  • [44] Computing discrepancies of Smolyak quadrature rules
    Frank, K
    Heinrich, S
    JOURNAL OF COMPLEXITY, 1996, 12 (04) : 287 - 314
  • [45] ON QUASI DEGREE QUADRATURE-RULES
    LYNESS, JN
    GATTESCHI, L
    NUMERISCHE MATHEMATIK, 1982, 39 (02) : 259 - 267
  • [46] Quadrature rules based on the Arnoldi process
    Calvetti, D
    Kim, SM
    Reichel, L
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (03) : 765 - 781
  • [47] ON GAUSS-TYPE QUADRATURE RULES
    Bokhari, M. A.
    Qadir, Asghar
    Al-Attas, H.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (10) : 1120 - 1134
  • [48] Interpolatory Quadrature Rules for Oscillatory Integrals
    Ledoux, Veerle
    Van Daele, Marnix
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 53 (03) : 586 - 607
  • [49] IN DEFENSE OF LINEAR QUADRATURE-RULES
    SQUIRE, W
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1981, 7 (02) : 147 - 149
  • [50] Inversely symmetric interpolatory quadrature rules
    de Andrade, EXL
    Bracciali, CF
    Ranga, AS
    ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) : 15 - 28