A note on weighted quadrature rules

被引:0
|
作者
Masjed-Jamei, Mohammad [1 ]
Area, Ivan [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16315-1618, Tehran, Iran
[2] Univ Vigo, EE De Telecomun, Dept Matemat Aplicada 2, Campus Lagoas Marcosende, Vigo 36310, Spain
基金
美国国家科学基金会;
关键词
changing the integration basis; Gaussian quadratures; extension of Gauss-Jacobi and Gauss-Laguerre rules; classical orthogonal polynomials; CLENSHAW-CURTIS TYPE; FORMULA;
D O I
10.1002/mma.3785
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is shown how to change the integration basis in some Gaussian (weighted) quadrature rules in order to obtain new quadrature models and improve classical results in the sequel. The main advantage of this approach is its simplicity, which can be implemented in any numerical integration package. Several remarkable numerical evidences are then given to show the advantage and efficiency of the proposed approach with respect to classical methods. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:6103 / 6113
页数:11
相关论文
共 50 条
  • [31] Quadrature rules from a RII type recurrence relation and associated quadrature rules on the unit circle
    Bracciali, Cleonice F.
    Pereira, Junior A.
    Ranga, A. Sri
    NUMERICAL ALGORITHMS, 2020, 83 (03) : 1029 - 1061
  • [32] Weighted quadrature in Krylov methods
    Lawson, JD
    Thomas, SJ
    Zahar, RVM
    UTILITAS MATHEMATICA, 1997, 51 : 165 - 182
  • [33] Efficient mass and stiffness matrix assembly via weighted Gaussian quadrature rules for B-splines
    Barton, Michael
    Puzyrev, Vladimir
    Deng, Quanling
    Calo, Victor
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 371
  • [34] The set of anti-Gaussian quadrature rules for the optimal set of quadrature rules in Borges' sense
    Petrovic, Nevena Z.
    Pranic, Miroslav S.
    Stanic, Marija P.
    Mladenovic, Tatjana V. Tomovic
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [35] A new class of quadrature rules for estimating the error in Gauss quadrature
    Pejcev, Aleksandar V.
    Reichel, Lothar
    Spalevic, Miodrag M.
    Spalevic, Stefan M.
    APPLIED NUMERICAL MATHEMATICS, 2024, 204 : 206 - 221
  • [36] A NOTE ON THE ERROR IN GAUSSIAN QUADRATURE
    MARTIN, C
    STAMP, M
    APPLIED MATHEMATICS AND COMPUTATION, 1992, 47 (01) : 25 - 35
  • [37] NOTE ON COHERENT QUADRATURE MODULATION
    AMOROSO, F
    IEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGY, 1969, CO17 (05): : 581 - &
  • [38] Note on Archimedes' quadrature of the parabola
    Vallo, Dusan
    Fulier, Jozef
    Rumanova, Lucia
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2022, 53 (04) : 1025 - 1036
  • [39] Note on Romberg Quadrature Formula
    Gao, Shang
    Gao, Yi
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION (ICMS2011), VOL 1, 2011, : 69 - 72
  • [40] Extended quadrature rules for oscillatory integrands
    Kim, KJ
    Cools, R
    Ixaru, LG
    APPLIED NUMERICAL MATHEMATICS, 2003, 46 (01) : 59 - 73