A note on weighted quadrature rules

被引:0
|
作者
Masjed-Jamei, Mohammad [1 ]
Area, Ivan [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16315-1618, Tehran, Iran
[2] Univ Vigo, EE De Telecomun, Dept Matemat Aplicada 2, Campus Lagoas Marcosende, Vigo 36310, Spain
基金
美国国家科学基金会;
关键词
changing the integration basis; Gaussian quadratures; extension of Gauss-Jacobi and Gauss-Laguerre rules; classical orthogonal polynomials; CLENSHAW-CURTIS TYPE; FORMULA;
D O I
10.1002/mma.3785
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is shown how to change the integration basis in some Gaussian (weighted) quadrature rules in order to obtain new quadrature models and improve classical results in the sequel. The main advantage of this approach is its simplicity, which can be implemented in any numerical integration package. Several remarkable numerical evidences are then given to show the advantage and efficiency of the proposed approach with respect to classical methods. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:6103 / 6113
页数:11
相关论文
共 50 条
  • [21] Symmetric quadrature rules on a triangle
    Wandzura, S
    Xiao, H
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (12) : 1829 - 1840
  • [22] A constraint on extensible quadrature rules
    Owen, Art B.
    NUMERISCHE MATHEMATIK, 2016, 132 (03) : 511 - 518
  • [23] CALCULATION OF GAUSS QUADRATURE RULES
    GOLUB, GH
    WELSCH, JH
    MATHEMATICS OF COMPUTATION, 1969, 23 (106) : 221 - &
  • [24] A constraint on extensible quadrature rules
    Art B. Owen
    Numerische Mathematik, 2016, 132 : 511 - 518
  • [25] Matrices and quadrature rules for wavelets
    Shann, WC
    Yen, CC
    TAIWANESE JOURNAL OF MATHEMATICS, 1998, 2 (04): : 435 - 446
  • [26] Quadrature rules for rational functions
    Gautschi, W
    Gori, L
    Lo Cascio, ML
    NUMERISCHE MATHEMATIK, 2000, 86 (04) : 617 - 633
  • [27] Quadrature rules for rational functions
    Walter Gautschi
    Laura Gori
    M. Laura Lo Cascio
    Numerische Mathematik, 2000, 86 : 617 - 633
  • [28] A probabilistic model for quadrature rules
    Masjed-Jamei, Mohammad
    Dehghan, Mehdi
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1520 - 1526
  • [29] Associated symmetric quadrature rules
    Ranga, AS
    deAndrade, EXL
    Phillips, GM
    APPLIED NUMERICAL MATHEMATICS, 1996, 21 (02) : 175 - 183
  • [30] Quadrature rules from a RII type recurrence relation and associated quadrature rules on the unit circle
    Cleonice F. Bracciali
    Junior A. Pereira
    A. Sri Ranga
    Numerical Algorithms, 2020, 83 : 1029 - 1061