A note on weighted quadrature rules

被引:0
|
作者
Masjed-Jamei, Mohammad [1 ]
Area, Ivan [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16315-1618, Tehran, Iran
[2] Univ Vigo, EE De Telecomun, Dept Matemat Aplicada 2, Campus Lagoas Marcosende, Vigo 36310, Spain
基金
美国国家科学基金会;
关键词
changing the integration basis; Gaussian quadratures; extension of Gauss-Jacobi and Gauss-Laguerre rules; classical orthogonal polynomials; CLENSHAW-CURTIS TYPE; FORMULA;
D O I
10.1002/mma.3785
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is shown how to change the integration basis in some Gaussian (weighted) quadrature rules in order to obtain new quadrature models and improve classical results in the sequel. The main advantage of this approach is its simplicity, which can be implemented in any numerical integration package. Several remarkable numerical evidences are then given to show the advantage and efficiency of the proposed approach with respect to classical methods. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:6103 / 6113
页数:11
相关论文
共 50 条
  • [1] WEIGHTED HERMITE QUADRATURE RULES
    Masjed-Jamei, Mohammad
    Milovanovic, Gradimir V.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2016, 45 : 476 - 498
  • [2] A note on equal coefficient quadrature rules
    Hashemiparast, S. M.
    Eslahchi, M. R.
    Dehghan, Mehdi
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) : 153 - 159
  • [3] A NOTE ON POSITIVE QUADRATURE-RULES
    SCHMID, HJ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (01) : 395 - 404
  • [4] NOTE ON EXTENDED GAUSSIAN QUADRATURE RULES
    MONEGATO, G
    MATHEMATICS OF COMPUTATION, 1976, 30 (136) : 812 - 817
  • [5] Weighted quadrature rules for finite element methods
    Oliveira, Saulo P.
    Madureira, Alexandre L.
    Valentin, Frederic
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 227 (01) : 93 - 101
  • [6] Quadrature Rules in the Isogeometric Galerkin Method: State of the Art and an Introduction to Weighted Quadrature
    Calabro, Francesco
    Loli, Gabriele
    Sangalli, Giancarlo
    Tani, Mattia
    ADVANCED METHODS FOR GEOMETRIC MODELING AND NUMERICAL SIMULATION, 2019, 35 : 43 - 55
  • [7] Explicit forms of weighted quadrature rules with geometric nodes
    Masjed-Jamei, Mohammad
    Milovanovic, Gradimir V.
    Jafari, M. A.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) : 1133 - 1139
  • [8] Weighted quadrature rules via Gruss type inequalities for weighted LP spaces
    Aljinovic, A. Aglic
    Pecaric, J.
    Tipuric-Spuzevic, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 1 - 12
  • [9] Weighted averaged Gaussian quadrature rules for modified Chebyshev measures
    Djukic, Dusan Lj.
    Djukic, Rada M. Mutavdzic
    Reichel, Lothar
    Spalevic, Miodrag M.
    APPLIED NUMERICAL MATHEMATICS, 2024, 200 : 195 - 208
  • [10] A Note on Finite Quadrature Rules with a Kind of Freud Weight Function
    Aghigh, Kamal
    Masjed-Jamei, M.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009