A new ignition hohlraum design for indirect-drive inertial confinement fusion

被引:9
|
作者
Li, Xin [1 ]
Wu, Chang-Shu [1 ]
Dai, Zhen-Sheng [1 ]
Zheng, Wu-Di [1 ]
Gu, Jian-Fa [1 ]
Gu, Pei-Jun [1 ]
Zou, Shi-Yang [1 ]
Liu, Jie [1 ]
Zhu, Shao-Ping [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
ICF; hohlraums; ignition; six-cylinder port;
D O I
10.1088/1674-1056/25/8/085202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a six-cylinder-port hohlraum is proposed to provide high symmetry flux on capsule. It is designed to ignite a capsule with 1.2-mm radius in indirect-drive inertial confinement fusion (ICF). Flux symmetry and laser energy are calculated by using three-dimensional view factor method and laser energy balance in hohlraum. Plasma conditions are analyzed based on the two-dimensional radiation-hydrodynamic simulations. There is no Y-lm (l <= 4) asymmetry in the six-cylinder-port hohlraum when the influences of laser entrance holes (LEHs) and laser spots cancel each other out with suitable target parameters. A radiation drive with 300 eV and good flux symmetry can be achieved by using a laser energy of 2.3 MJ and peak power of 500 TW. According to the simulations, the electron temperature and the electron density on the wall of laser cone are high and low, respectively, which are similar to those of outer cones in the hohlraums on National Ignition Facility (NIF). And the laser intensity is also as low as those of NIF outer cones. So the backscattering due to laser plasma interaction (LPI) is considered to be negligible. The six-cyliner-port hohlraum could be superior to the traditional cylindrical hohlraum and the octahedral hohlraum in both higher symmetry and lower backscattering without supplementary technology at an acceptable laser energy level. It is undoubted that the hohlraum will add to the diversity of ICF approaches.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] LARED-Integration code for numerical simulation of the whole processof the indirect-drive laser inertial confinement fusion
    Song, Peng
    Zhai, Chuanlei
    Li, Shuanggui
    Yong, Heng
    Qi, Jin
    Hang, Xudeng
    Yang, Rong
    Cheng, Juan
    Zeng, Qinghong
    Hu, Xiaoyan
    Wang, Shuai
    Shi, Yi
    Zheng, Wudi
    Gu, Peijun
    Zou, Shiyang
    Li, Xin
    Zhao, Yiqing
    Zhang, Huasen
    Zhang, Aiqing
    An, Hengbin
    Li, Jinghong
    Pei, Wenbing
    Zhu, Shaoping
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2015, 27 (03):
  • [32] Shock propagation, preheat, and x-ray burnthrough in indirect-drive inertial confinement fusion ablator materials
    Olson, RE
    Leeper, RJ
    Nobile, A
    Oertel, JA
    Chandler, GA
    Cochrane, K
    Dropinski, SC
    Evans, S
    Haan, SW
    Kaae, JL
    Knauer, JP
    Lash, K
    Mix, LP
    Nikroo, A
    Rochau, GA
    Rivera, G
    Russell, C
    Schroen, D
    Sebring, RJ
    Tanner, DL
    Turner, RE
    Wallace, RJ
    PHYSICS OF PLASMAS, 2004, 11 (05) : 2778 - 2789
  • [33] A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition
    Longyu Kuang
    Hang Li
    Longfei Jing
    Zhiwei Lin
    Lu Zhang
    Liling Li
    Yongkun Ding
    Shaoen Jiang
    Jie Liu
    Jian Zheng
    Scientific Reports, 6
  • [34] Foam-lined hohlraum, inertial confinement fusion experiments on the National Ignition Facility
    Moore, A. S.
    Meezan, N. B.
    Milovich, J.
    Johnson, S.
    Heredia, R.
    Baumann, T. F.
    Biener, M.
    Bhandarkar, S. D.
    Chen, H.
    Divol, L.
    Izumi, N.
    Nikroo, A.
    Baker, K.
    Jones, O.
    Landen, O. L.
    Hsing, W. W.
    Moody, J. D.
    Thomas, C. A.
    Lahmann, B.
    Williams, J.
    Alfonso, N.
    Schoff, M. E.
    PHYSICAL REVIEW E, 2020, 102 (05)
  • [35] A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition
    Kuang, Longyu
    Li, Hang
    Jing, Longfei
    Lin, Zhiwei
    Zhang, Lu
    Li, Liling
    Ding, Yongkun
    Jiang, Shaoen
    Liu, Jie
    Zheng, Jian
    SCIENTIFIC REPORTS, 2016, 6
  • [36] Energetics of inertial confinement fusion Hohlraum plasmas
    Glenzer, SH
    Suter, LJ
    Turner, RE
    MacGowan, BJ
    Estabrook, KG
    Blain, MA
    Dixit, SN
    Hammel, BA
    Kauffman, RL
    Kirkwood, RK
    Landen, OL
    Monteil, MC
    Moody, JD
    Orzechowski, TJ
    Pennington, DM
    Stone, GF
    Weiland, TL
    PHYSICAL REVIEW LETTERS, 1998, 80 (13) : 2845 - 2848
  • [37] Progress in the indirect-drive National Ignition Campaign
    Landen, O. L.
    Benedetti, R.
    Bleuel, D.
    Boehly, T. R.
    Bradley, D. K.
    Caggiano, J. A.
    Callahan, D. A.
    Celliers, P. M.
    Cerjan, C. J.
    Clark, D.
    Collins, G. W.
    Dewald, E. L.
    Dixit, S. N.
    Doeppner, T.
    Edgell, D.
    Eggert, J.
    Farley, D.
    Frenje, J. A.
    Glebov, V.
    Glenn, S. M.
    Glenzer, S. H.
    Haan, S. W.
    Hamza, A.
    Hammel, B. A.
    Haynam, C. A.
    Hammer, J. H.
    Heeter, R. F.
    Herrmann, H. W.
    Hicks, D. G.
    Hinkel, D. E.
    Izumi, N.
    Johnson, M. Gatu
    Jones, O. S.
    Kalantar, D. H.
    Kauffman, R. L.
    Kilkenny, J. D.
    Kline, J. L.
    Knauer, J. P.
    Koch, J. A.
    Kyrala, G. A.
    LaFortune, K.
    Ma, T.
    Mackinnon, A. J.
    Macphee, A. J.
    Mapoles, E.
    Milovich, J. L.
    Moody, J. D.
    Meezan, N. B.
    Michel, P.
    Moore, A. S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (12)
  • [38] STUDY ON PROPAGATION OF TEMPERATURE DISTURBANCE IN INDIRECT-DRIVE INERTIAL CONFINEMENT CRYOGENIC TARGET SYSTEM
    Li Cui
    Li Yanzhong
    Chen PengWei
    Zhao Jun
    Zheng Jiang
    14TH CRYOGENICS 2017 IIR INTERNATIONAL CONFERENCE (CRYOGENICS 2017), 2017, : 434 - 440
  • [39] Enhanced energy coupling for indirect-drive fast-ignition fusion targets
    F. Zhang
    H. B. Cai
    W. M. Zhou
    Z. S. Dai
    L. Q. Shan
    H. Xu
    J. B. Chen
    F. J. Ge
    Q. Tang
    W. S. Zhang
    L. Wei
    D. X. Liu
    J. F. Gu
    H. B. Du
    B. Bi
    S. Z. Wu
    J. Li
    F. Lu
    H. Zhang
    B. Zhang
    M. Q. He
    M. H. Yu
    Z. H. Yang
    W. W. Wang
    H. S. Zhang
    B. Cui
    L. Yang
    J. F. Wu
    W. Qi
    L. H. Cao
    Z. Li
    H. J. Liu
    Y. M. Yang
    G. L. Ren
    C. Tian
    Z. Q. Yuan
    W. D. Zheng
    L. F. Cao
    C. T. Zhou
    S. Y. Zou
    Y. Q. Gu
    K. Du
    Y. K. Ding
    B. H. Zhang
    S. P. Zhu
    W. Y. Zhang
    X. T. He
    Nature Physics, 2020, 16 : 810 - 814
  • [40] Progress of indirect drive inertial confinement fusion in the United States
    Kline, J. L.
    Batha, S. H.
    Benedetti, L. R.
    Bennett, D.
    Bhandarkar, S.
    Hopkins, L. F. Berzak
    Biener, J.
    Biener, M. M.
    Bionta, R.
    Bond, E.
    Bradley, D.
    Braun, T.
    Callahan, D. A.
    Caggiano, J.
    Cerjan, C.
    Cagadas, B.
    Clark, D.
    Castro, C.
    Dewald, E. L.
    Doeppner, T.
    Divol, L.
    Dylla-Spears, R.
    Eckart, M.
    Edgell, D.
    Farrell, M.
    Field, J.
    Fittinghoff, D. N.
    Johnson, M. Gatu
    Grim, G.
    Haan, S.
    Haines, B. M.
    Hamza, A., V
    Hartouni, E. P.
    Hatarik, R.
    Henderson, K.
    Herrmann, H. W.
    Hinkel, D.
    Ho, D.
    Hohenberger, M.
    Hoover, D.
    Huang, H.
    Hoppe, M. L.
    Hurricane, O. A.
    Izumi, N.
    Johnson, S.
    Jones, O. S.
    Khan, S.
    Kozioziemski, B. J.
    Kong, C.
    Kroll, J.
    NUCLEAR FUSION, 2019, 59 (11)