Progress of indirect drive inertial confinement fusion in the United States

被引:43
|
作者
Kline, J. L. [1 ]
Batha, S. H. [1 ]
Benedetti, L. R. [2 ]
Bennett, D. [2 ]
Bhandarkar, S. [2 ]
Hopkins, L. F. Berzak [2 ]
Biener, J. [2 ]
Biener, M. M. [2 ]
Bionta, R. [2 ]
Bond, E. [2 ]
Bradley, D. [2 ]
Braun, T. [2 ]
Callahan, D. A. [2 ]
Caggiano, J. [2 ]
Cerjan, C. [2 ]
Cagadas, B. [2 ]
Clark, D. [2 ]
Castro, C. [2 ]
Dewald, E. L. [2 ]
Doeppner, T. [2 ]
Divol, L. [2 ]
Dylla-Spears, R. [2 ]
Eckart, M. [2 ]
Edgell, D. [4 ]
Farrell, M. [3 ]
Field, J. [2 ]
Fittinghoff, D. N. [2 ]
Johnson, M. Gatu [5 ]
Grim, G. [2 ]
Haan, S. [2 ]
Haines, B. M. [1 ]
Hamza, A., V [2 ]
Hartouni, E. P. [2 ]
Hatarik, R. [2 ]
Henderson, K. [2 ]
Herrmann, H. W. [1 ]
Hinkel, D. [2 ]
Ho, D. [2 ]
Hohenberger, M. [2 ]
Hoover, D. [3 ]
Huang, H. [3 ]
Hoppe, M. L. [3 ]
Hurricane, O. A. [2 ]
Izumi, N. [2 ]
Johnson, S. [2 ]
Jones, O. S. [2 ]
Khan, S. [2 ]
Kozioziemski, B. J. [2 ]
Kong, C. [2 ]
Kroll, J. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA USA
[3] Gen Atom, San Diego, CA USA
[4] Lab Laser Energet, Rochester, NY USA
[5] MIT, Boston, MA USA
关键词
inertial fusion; indirect drive; laser fusion; inertial fusion energy; HYDRODYNAMIC INSTABILITIES; IGNITION; SIMULATIONS; TARGETS; GAIN;
D O I
10.1088/1741-4326/ab1ecf
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Indirect drive converts high power laser light into x-rays using small high-Z cavities called hohlraums. X-rays generated at the hohlraum walls drive a capsule filled with deuterium-tritium (DT) fuel to fusion conditions. Recent experiments have produced fusion yields exceeding 50 Id where alpha heating provides similar to 3 x increase in yield over PdV work. Closing the gaps toward ignition is challenging, requiring optimization of the target/implosions and the laser to extract maximum energy. The US program has a three-pronged approach to maximize target performance, each closing some portion of the gap. The first item is optimizing the hohlraum to couple more energy to the capsule while maintaining symmetry control. Novel hohlraum designs are being pursued that enable a larger capsule to be driven symmetrically to both reduce 3D effects and increase energy coupled to the capsule. The second issue being addressed is capsule stability. Seeding of instabilities by the hardware used to mount the capsule and fill it with DT fuel remains a concern. Work reducing the impact of the DT fill tubes and novel capsule mounts is being pursed to reduce the effect of mix on the capsule implosions. There is also growing evidence native capsule seeds such as a micro-structure may be playing a role on limiting capsule performance and dedicated experiments are being developed to better understand the phenomenon. The last area of emphasis is the laser. As technology progresses and understanding of laser damage/mitigation advances, increasing the laser energy seems possible. This would increase the amount of energy available to couple to the capsule, and allow larger capsules, potentially increasing the hot spot pressure and confinement time. The combination of each of these focus areas has the potential to produce conditions to initiate thermo-nuclear ignition.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Recent progress in inertial confinement fusion in the United States
    McCrory, RL
    [J]. NUCLEAR FUSION, 2004, 44 (12) : S123 - S128
  • [2] Progress in direct-drive inertial confinement fusion
    McCrory, R. L.
    Meyerhofer, D. D.
    Betti, R.
    Boehly, T. R.
    Collins, T. J. B.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Epstein, R.
    Froula, D. H.
    Glebov, V. Yu
    Goncharov, V. N.
    Harding, D. R.
    Hu, S. X.
    Igumenshchev, I. V.
    Knauer, J. P.
    Loucks, S. J.
    Marozas, J. A.
    Marshall, F. J.
    McKenty, P. W.
    Michel, T.
    Nilson, P. M.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seka, W.
    Shmayda, W. T.
    Short, R. W.
    Shvarts, D.
    Skupsky, S.
    Soures, J. M.
    Stoeckl, C.
    Theobald, W.
    Yaakobi, B.
    Frenje, J. A.
    Casey, D. T.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    Padalino, S. J.
    Fletcher, K. A.
    Celliers, P. M.
    Collins, G. W.
    Robey, H. F.
    [J]. IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [3] Progress in direct-drive inertial confinement fusion
    McCrory, R. L.
    Meyerhofer, D. D.
    Betti, R.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Glebov, V. Yu.
    Goncharov, V. N.
    Harding, D. R.
    Jacobs-Perkins, D. W.
    Knauer, J. P.
    Marshall, F. J.
    McKenty, P. W.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seka, W.
    Short, R. W.
    Skupsky, S.
    Smalyuk, V. A.
    Soures, J. M.
    Stoeckl, C.
    Yaakobi, B.
    Shvarts, D.
    Frenje, J. A.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (05)
  • [4] Pulsed power indirect drive approach to inertial confinement fusion
    Olson, R. E.
    Leeper, R. J.
    Batha, S. H.
    Peterson, R. R.
    Bradley, P. A.
    Stygar, W. A.
    LeChien, K. R.
    Robey, H. F.
    Young, C., V
    Meezan, N. B.
    [J]. HIGH ENERGY DENSITY PHYSICS, 2020, 36
  • [5] Adiabat-shaping in indirect drive inertial confinement fusion
    Baker, K. L.
    Robey, H. F.
    Milovich, J. L.
    Jones, O. S.
    Smalyuk, V. A.
    Casey, D. T.
    MacPhee, A. G.
    Pak, A.
    Celliers, P. M.
    Clark, D. S.
    Landen, O. L.
    Peterson, J. L.
    Berzak-Hopkins, L. F.
    Weber, C. R.
    Haan, S. W.
    Doeppner, T. D.
    Dixit, S.
    Giraldez, E.
    Hamza, A. V.
    Jancaitis, K. S.
    Kroll, J. J.
    Lafortune, K. N.
    MacGowan, B. J.
    Moody, J. D.
    Nikroo, A.
    Widmayer, C. C.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (05)
  • [6] Laser plasma instability in indirect-drive inertial confinement fusion
    Yang Dong
    Li ZhiChao
    Li SanWei
    Hao Liang
    Li Xin
    Guo Liang
    Zou ShiYang
    Jiang XiaoHua
    Peng XiaoShi
    Xu Tao
    Li YuLong
    Zheng ChunYang
    Cai HongBo
    Liu ZhanJun
    Zheng Jian
    Gong Tao
    Wang ZheBin
    Li Hang
    Kuang LongYu
    Li Qi
    Wang Feng
    Liu ShenYe
    Yang JiaMin
    Jiang ShaoEn
    Zhang BaoHan
    Ding YongKun
    [J]. SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2018, 48 (06)
  • [7] High convergence, indirect drive inertial confinement fusion experiments at nova
    Lerche, RA
    Cable, MD
    Hatchett, SP
    Caird, JA
    Kilkenny, JD
    Kornblum, HN
    Lane, SM
    Laumann, C
    Murphy, TJ
    Murray, J
    Nelson, MB
    Phillion, DW
    Powell, H
    Ress, D
    [J]. LASER INTERACTION AND RELATED PLASMA PHENOMENA, 1996, (369): : 89 - 94
  • [8] First indirect drive inertial confinement fusion campaign at Laser Megajoule
    Liberatore, S.
    Gauthier, P.
    Willien, J. L.
    Masson-Laborde, P. E.
    Philippe, F.
    Poujade, O.
    Alozy, E.
    Botrel, R.
    Boutoux, G.
    Bray, J.
    Caillaud, T.
    Chicanne, C.
    Chollet, C.
    Debayle, A.
    Depierreux, S.
    Duchastenier, W.
    Ferri, M.
    Henry, O.
    Hoch, P.
    Laffite, S.
    Landoas, O.
    Le-Deroff, L.
    Lefebvre, E.
    Legay, G.
    Marmajou, I.
    Meyer, C.
    Molina, K.
    Morice, O.
    Peche, E.
    Prunet, P.
    Riquier, R.
    Rosch, R.
    Tassin, V.
    Vaisseau, X.
    Villette, B.
    [J]. PHYSICS OF PLASMAS, 2023, 30 (12)
  • [9] PROGRESS IN INERTIAL CONFINEMENT FUSION
    FABRE, E
    HAMMERLING, P
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1988, 30 (11) : 1535 - 1548
  • [10] A new ignition hohlraum design for indirect-drive inertial confinement fusion
    Li, Xin
    Wu, Chang-Shu
    Dai, Zhen-Sheng
    Zheng, Wu-Di
    Gu, Jian-Fa
    Gu, Pei-Jun
    Zou, Shi-Yang
    Liu, Jie
    Zhu, Shao-Ping
    [J]. CHINESE PHYSICS B, 2016, 25 (08)