A new ignition hohlraum design for indirect-drive inertial confinement fusion

被引:9
|
作者
Li, Xin [1 ]
Wu, Chang-Shu [1 ]
Dai, Zhen-Sheng [1 ]
Zheng, Wu-Di [1 ]
Gu, Jian-Fa [1 ]
Gu, Pei-Jun [1 ]
Zou, Shi-Yang [1 ]
Liu, Jie [1 ]
Zhu, Shao-Ping [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
ICF; hohlraums; ignition; six-cylinder port;
D O I
10.1088/1674-1056/25/8/085202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a six-cylinder-port hohlraum is proposed to provide high symmetry flux on capsule. It is designed to ignite a capsule with 1.2-mm radius in indirect-drive inertial confinement fusion (ICF). Flux symmetry and laser energy are calculated by using three-dimensional view factor method and laser energy balance in hohlraum. Plasma conditions are analyzed based on the two-dimensional radiation-hydrodynamic simulations. There is no Y-lm (l <= 4) asymmetry in the six-cylinder-port hohlraum when the influences of laser entrance holes (LEHs) and laser spots cancel each other out with suitable target parameters. A radiation drive with 300 eV and good flux symmetry can be achieved by using a laser energy of 2.3 MJ and peak power of 500 TW. According to the simulations, the electron temperature and the electron density on the wall of laser cone are high and low, respectively, which are similar to those of outer cones in the hohlraums on National Ignition Facility (NIF). And the laser intensity is also as low as those of NIF outer cones. So the backscattering due to laser plasma interaction (LPI) is considered to be negligible. The six-cyliner-port hohlraum could be superior to the traditional cylindrical hohlraum and the octahedral hohlraum in both higher symmetry and lower backscattering without supplementary technology at an acceptable laser energy level. It is undoubted that the hohlraum will add to the diversity of ICF approaches.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Performance scaling with an applied magnetic field in indirect-drive inertial confinement fusion implosions
    Sio, H.
    Moody, J. D.
    Pollock, B. B.
    Strozzi, D. J.
    Ho, D. D. M.
    Walsh, C. A.
    Kemp, G. E.
    Lahmann, B.
    Kucheyev, S. O.
    Kozioziemski, B.
    Carroll, E. G.
    Kroll, J.
    Yanagisawa, D. K.
    Angus, J.
    Bachmann, B.
    Baker, A. A.
    Bayu Aji, L. B.
    Bhandarkar, S. D.
    Bude, J. D.
    Divol, L.
    Engwall, A. M.
    Ferguson, B.
    Fry, J.
    Hagler, L.
    Hartouni, E.
    Herrmann, M. C.
    Hsing, W.
    Holunga, D. M.
    Javedani, J.
    Johnson, A.
    Khan, S.
    Kalantar, D.
    Kohut, T.
    Logan, B. G.
    Masters, N.
    Nikroo, A.
    Izumi, N.
    Orsi, N.
    Piston, K.
    Provencher, C.
    Rowe, A.
    Sater, J.
    Shin, S. J.
    Skulina, K.
    Stygar, W. A.
    Tang, V.
    Winters, S. E.
    Zimmerman, G.
    Chittenden, J. P.
    Appelbe, B.
    [J]. PHYSICS OF PLASMAS, 2023, 30 (07)
  • [22] Indirect-drive inertial confinement fusion using highly supersonic, radiatively cooled, plasma slugs
    Chittenden, JP
    Dunne, M
    Zepf, M
    Lebedev, SV
    Ciardi, A
    Bland, SN
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (23) : 2350011 - 2350014
  • [23] Role of laser beam geometry in improving implosion symmetry and performance for indirect-drive inertial confinement fusion
    Turner, RE
    Amendt, PA
    Landen, OL
    Suter, LJ
    Wallace, RJ
    Hammel, BA
    [J]. PHYSICS OF PLASMAS, 2003, 10 (06) : 2429 - 2432
  • [24] Jet-ignited indirect-drive inertial fusion targets
    Martinez-Val, JM
    Eliezer, S
    Piera, M
    Velarde, PM
    [J]. LASER INTERACTION AND RELATED PLASMA PHENOMENA - 13TH INTERNATIONAL CONFERENCE, 1997, (406): : 208 - 215
  • [25] Review of indirect-drive ignition design options for the National Ignition Facility
    Dittrich, TR
    Haan, SW
    Marinak, MM
    Pollaine, SM
    Hinkel, DE
    Munro, DH
    Verdon, CP
    Strobel, GL
    McEachern, R
    Cook, RC
    Roberts, CC
    Wilson, DC
    Bradley, PA
    Foreman, LR
    Varnum, WS
    [J]. PHYSICS OF PLASMAS, 1999, 6 (05) : 2164 - 2170
  • [26] Shadowgraphic Characterization Method of a Cryogenic Hydrogen Isotope Layer in an Indirect-Drive Target for Inertial Confinement Fusion
    E. Yu. Zarubina
    M. A. Rogozhina
    [J]. Physics of Atomic Nuclei, 2022, 85 : 1638 - 1641
  • [27] Shadowgraphic Characterization Method of a Cryogenic Hydrogen Isotope Layer in an Indirect-Drive Target for Inertial Confinement Fusion
    Zarubina, E. Yu.
    Rogozhina, M. A.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2022, 85 (10) : 1638 - 1641
  • [28] HOHLRAUM MANUFACTURE FOR INERTIAL CONFINEMENT FUSION
    FOREMAN, LR
    GOBBY, P
    BARTOS, J
    BROOKS, PM
    BUSH, H
    GOMEZ, V
    ELLIOTT, N
    MOORE, J
    RIVERA, G
    SALAZAR, M
    SALZER, L
    [J]. FUSION TECHNOLOGY, 1994, 26 (03): : 696 - 701
  • [29] Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona
    Zhang, Wen-Shuai
    Cai, Hong-Bo
    Shan, Lian-Qiang
    Zhang, Hua-Sen
    Gu, Yu-Qiu
    Zhu, Shao-Ping
    [J]. NUCLEAR FUSION, 2017, 57 (06)
  • [30] Shock propagation, preheat, and x-ray burnthrough in indirect-drive inertial confinement fusion ablator materials
    Olson, RE
    Leeper, RJ
    Nobile, A
    Oertel, JA
    Chandler, GA
    Cochrane, K
    Dropinski, SC
    Evans, S
    Haan, SW
    Kaae, JL
    Knauer, JP
    Lash, K
    Mix, LP
    Nikroo, A
    Rochau, GA
    Rivera, G
    Russell, C
    Schroen, D
    Sebring, RJ
    Tanner, DL
    Turner, RE
    Wallace, RJ
    [J]. PHYSICS OF PLASMAS, 2004, 11 (05) : 2778 - 2789