NUMERICAL EFFICACY STUDY OF DATA ASSIMILATION FOR THE 2D MAGNETOHYDRODYNAMIC EQUATIONS

被引:14
|
作者
Hudson, Joshua [1 ,2 ]
Jolly, Michael [3 ]
机构
[1] Univ Maryland Baltimore Cty, 1000 Hilltop Circle, Baltimore, MD 21055 USA
[2] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
[3] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2019年 / 6卷 / 01期
基金
美国国家科学基金会;
关键词
Magnetohydrodynamic equations; data assimilation; synchronization; BENARD CONVECTION; ALGORITHM; VELOCITY; STATE; MODES;
D O I
10.3934/jcd.2019006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the computational efficiency of several nudging data assimilation algorithms for the 2D magnetohydrodynamic equations, using varying amounts and types of data. We find that the algorithms work with much less resolution in the data than required by the rigorous estimates in [7]. We also test other abridged nudging algorithms to which the analytic techniques in [7] do not seem to apply. These latter tests indicate, in particular, that velocity data alone is sufficient for synchronization with a chaotic reference solution, while magnetic data alone is not. We demonstrate that a new nonlinear nudging algorithm, which is adaptive in both time and space, synchronizes at a super exponential rate.
引用
收藏
页码:131 / 145
页数:15
相关论文
共 50 条
  • [41] Numerical solutions to 2D Maxwell-Bloch equations
    Xiong, Jingyi
    Colice, Max
    Schlottau, Friso
    Wagner, Kelvin
    Fornberg, Bengt
    OPTICAL AND QUANTUM ELECTRONICS, 2008, 40 (5-6) : 447 - 453
  • [42] On the method of numerical integration of 2D boundary layer equations
    Bartulis, A.
    Shcherbinin, E.
    1600, Zinatne (36):
  • [43] NUMERICAL STUDY OF FLOW IN A 2D BOILER
    Bauer, Peter
    Klement, Vladimir
    Strachota, Pavel
    Zabka, Vitezslav
    ALGORITMY 2012, 2012, : 172 - 178
  • [44] Singularity formation to the 2D Cauchy problem of nonbarotropic magnetohydrodynamic equations without heat conductivity
    Zhong, Xin
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3782 - 3801
  • [45] A Modular Grad-Div Stabilization for the 2D/3D Nonstationary Incompressible Magnetohydrodynamic Equations
    Lu, Xiaoli
    Huang, Pengzhan
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [46] A Modular Grad-Div Stabilization for the 2D/3D Nonstationary Incompressible Magnetohydrodynamic Equations
    Xiaoli Lu
    Pengzhan Huang
    Journal of Scientific Computing, 2020, 82
  • [47] Data Assimilation by Use of the Iterative Ensemble Smoother for 2D Facies Models
    Zhang, Yanhui
    Oliver, Dean S.
    Chen, Yan
    Skaug, Hans J.
    SPE JOURNAL, 2015, 20 (01): : 169 - 185
  • [48] Effective numerical computation of p(x)–Laplace equations in 2D
    Aragón A.
    Fernández Bonder J.
    Rubio D.
    International Journal of Computer Mathematics, 2023, 100 (11) : 2111 - 2123
  • [49] Numerical Solution for the 2D Linear Fredholm Functional Integral Equations
    Khaksari, Neda
    Paripour, Mahmoud
    Karamikabir, Nasrin
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [50] Abridged Continuous Data Assimilation for the 2D Navier–Stokes Equations Utilizing Measurements of Only One Component of the Velocity Field
    Aseel Farhat
    Evelyn Lunasin
    Edriss S. Titi
    Journal of Mathematical Fluid Mechanics, 2016, 18 : 1 - 23