Effective numerical computation of p(x)–Laplace equations in 2D

被引:0
|
作者
Aragón A. [1 ]
Fernández Bonder J. [2 ]
Rubio D. [1 ]
机构
[1] Centro de Matemática Aplicada (CEDEMA), Universidad Nacional de San Martín, Villa Lynch, Provincia de Buenos Aires
[2] Departamento de Matemática, FCEN – Universidad de Buenos Aires, Instituto de Cálculo – CONICET, Buenos Aires
关键词
decomposition-coordination method; finite elements; Laplacian;
D O I
10.1080/00207160.2023.2263103
中图分类号
学科分类号
摘要
In this article we implement a method for the computation of a nonlinear elliptic problem with nonstandard growth driven by the (Formula presented.) Laplacian operator. Our implementation is based in the decomposition–coordination method that allows us, via an iterative process, to solve in each step a linear differential equation and a nonlinear algebraic equation. Our code is implemented in MatLab in two dimensions and turns out to be extremely efficient from the computational point of view. © 2023 Informa UK Limited, trading as Taylor & Francis Group.
引用
收藏
页码:2111 / 2123
页数:12
相关论文
共 50 条
  • [1] Active Exterior Cloaking for the 2D Laplace and Helmholtz Equations
    Vasquez, Fernando Guevara
    Milton, Graeme W.
    Onofrei, Daniel
    PHYSICAL REVIEW LETTERS, 2009, 103 (07)
  • [2] Harmonic Measures and Numerical Computation of Cauchy Problems for Laplace Equations
    Yu Chen
    Jin Cheng
    Shuai Lu
    Masahiro Yamamoto
    Chinese Annals of Mathematics, Series B, 2023, 44 : 913 - 928
  • [3] Harmonic Measures and Numerical Computation of Cauchy Problems for Laplace Equations
    Yu CHEN
    Jin CHENG
    Shuai LU
    Masahiro YAMAMOTO
    ChineseAnnalsofMathematics,SeriesB, 2023, (06) : 913 - 928
  • [4] Harmonic Measures and Numerical Computation of Cauchy Problems for Laplace Equations
    Chen, Yu
    Cheng, Jin
    Lu, Shuai
    Yamamoto, Masahiro
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (06) : 913 - 928
  • [5] Fibered nonlinearities for p(x)-Laplace equations
    Chermisi, Milena
    Valdinoci, Enrico
    ADVANCES IN CALCULUS OF VARIATIONS, 2009, 2 (02) : 185 - 205
  • [6] Numerical solutions to 2D Maxwell–Bloch equations
    Jingyi Xiong
    Max Colice
    Friso Schlottau
    Kelvin Wagner
    Bengt Fornberg
    Optical and Quantum Electronics, 2008, 40 : 447 - 453
  • [7] SOLUTIONS FOR p(x)-LAPLACE EQUATIONS WITH CRITICAL FREQUENCY
    Zhang, Xia
    Zhang, Chao
    Gao, Huimin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [8] On the localization and numerical computation of positive radial solutions for ?-Laplace equations in the annulus br
    Rodriguez-Lopez, Jorge
    Precup, Radu
    Gheorghiu, Calin-Ioan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (47) : 1 - 22
  • [9] An effective finite element Newton method for 2D p-Laplace equation with particular initial iterative function
    Zhendong Luo
    Fei Teng
    Journal of Inequalities and Applications, 2016
  • [10] An effective finite element Newton method for 2D p-Laplace equation with particular initial iterative function
    Luo, Zhendong
    Teng, Fei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,