Rolling Bearing Incipient Fault Diagnosis Method Based on Improved Transfer Learning with Hybrid Feature Extraction

被引:12
|
作者
Yang, Zhengni [1 ,2 ]
Yang, Rui [1 ,3 ]
Huang, Mengjie [4 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China
[2] Xinjiang Teachers Coll, Inst Informat Technol, Urumqi 830043, Peoples R China
[3] Xian Jiaotong Liverpool Univ, Res Inst Big Data Analyt, Suzhou 215123, Peoples R China
[4] Xian Jiaotong Liverpool Univ, Design Sch, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
bearing fault diagnosis; incipient fault; transfer learning; domain adaptation; NEURAL-NETWORKS; GEARBOX;
D O I
10.3390/s21237894
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Data-driven based rolling bearing fault diagnosis has been widely investigated in recent years. However, in real-world industry scenarios, the collected labeled samples are normally in a different data distribution. Moreover, the features of bearing fault in the early stages are extremely inconspicuous. Due to the above mentioned problems, it is difficult to diagnose the incipient fault under different scenarios by adopting the conventional data-driven methods. Therefore, in this paper a new unsupervised rolling bearing incipient fault diagnosis approach based on transfer learning is proposed, with a novel feature extraction method based on a statistical algorithm, wavelet scattering network, and a stacked auto-encoder network. Then, the geodesic flow kernel algorithm is adopted to align the feature vectors on the Grassmann manifold, and the k-nearest neighbor classifier is used for fault classification. The experiment is conducted based on two bearing datasets, the bearing fault dataset of Case Western Reserve University and the bearing fault dataset of Xi'an Jiaotong University. The experiment results illustrate the effectiveness of the proposed approach on solving the different data distribution and incipient bearing fault diagnosis issues.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] An unsupervised learning method for bearing fault diagnosis based on sparse feature extraction
    Li Shunming
    Wang Jinrui
    Li Xianglian
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [22] Rolling Bearing Fault Diagnosis Based on Graph Modeling Feature Extraction
    Zhang, Di
    Lu, Guoliang
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2021, 41 (02): : 249 - 253
  • [23] Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
    Zhu, Huibin
    He, Zhangming
    Wei, Juhui
    Wang, Jiongqi
    Zhou, Haiyin
    SENSORS, 2021, 21 (07)
  • [24] A Feature Extraction Method Using Improved Multi-Scale Entropy for Rolling Bearing Fault Diagnosis
    Ju, Bin
    Zhang, Haijiao
    Liu, Yongbin
    Liu, Fang
    Lu, Siliang
    Dai, Zhijia
    ENTROPY, 2018, 20 (04):
  • [25] A Feature Extraction Method Using VMD and Improved Envelope Spectrum Entropy for Rolling Bearing Fault Diagnosis
    Yang, Yang
    Liu, Hui
    Han, Lijin
    Gao, Pu
    IEEE SENSORS JOURNAL, 2023, 23 (04) : 3848 - 3858
  • [26] An Improved Method Based on CEEMD for Fault Diagnosis of Rolling Bearing
    Li, Meijiao
    Wang, Huaqing
    Tang, Gang
    Yuan, Hongfang
    Yang, Yang
    ADVANCES IN MECHANICAL ENGINEERING, 2014,
  • [27] Fault Feature Extraction Method of Rolling Bearing Based on IAFD and TKEO
    Guo, Kai
    Ma, Jun
    Xiong, Xin
    Hu, Yuming
    Li, Xiang
    JOURNAL OF SENSORS, 2024, 2024
  • [28] A Feature Extraction Method for Fault Classification of Rolling Bearing based on PCA
    Wang, Fengtao
    Sun, Jian
    Yan, Dawen
    Zhang, Shenghua
    Cui, Liming
    Xu, Yong
    11TH INTERNATIONAL CONFERENCE ON DAMAGE ASSESSMENT OF STRUCTURES (DAMAS 2015), 2015, 628
  • [29] Fault diagnosis method of rolling bearing based on improved MBCV method
    Wu, Chao
    Cui, Ling-Li
    Zhang, Jian-Yu
    Wang, Xin
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2022, 35 (04): : 942 - 948
  • [30] An improved morphological filtering and feature enhancement method for rolling bearing fault diagnosis
    Ren, Xueping
    Guo, Liangjian
    Liu, Tongtong
    Zhang, Chao
    Pang, Zhen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)