Rolling Bearing Incipient Fault Diagnosis Method Based on Improved Transfer Learning with Hybrid Feature Extraction

被引:12
|
作者
Yang, Zhengni [1 ,2 ]
Yang, Rui [1 ,3 ]
Huang, Mengjie [4 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China
[2] Xinjiang Teachers Coll, Inst Informat Technol, Urumqi 830043, Peoples R China
[3] Xian Jiaotong Liverpool Univ, Res Inst Big Data Analyt, Suzhou 215123, Peoples R China
[4] Xian Jiaotong Liverpool Univ, Design Sch, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
bearing fault diagnosis; incipient fault; transfer learning; domain adaptation; NEURAL-NETWORKS; GEARBOX;
D O I
10.3390/s21237894
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Data-driven based rolling bearing fault diagnosis has been widely investigated in recent years. However, in real-world industry scenarios, the collected labeled samples are normally in a different data distribution. Moreover, the features of bearing fault in the early stages are extremely inconspicuous. Due to the above mentioned problems, it is difficult to diagnose the incipient fault under different scenarios by adopting the conventional data-driven methods. Therefore, in this paper a new unsupervised rolling bearing incipient fault diagnosis approach based on transfer learning is proposed, with a novel feature extraction method based on a statistical algorithm, wavelet scattering network, and a stacked auto-encoder network. Then, the geodesic flow kernel algorithm is adopted to align the feature vectors on the Grassmann manifold, and the k-nearest neighbor classifier is used for fault classification. The experiment is conducted based on two bearing datasets, the bearing fault dataset of Case Western Reserve University and the bearing fault dataset of Xi'an Jiaotong University. The experiment results illustrate the effectiveness of the proposed approach on solving the different data distribution and incipient bearing fault diagnosis issues.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Weak Fault Feature Extraction of Rolling Bearing Based on SVMD and Improved MOMEDA
    Wang, Xinyu
    Ma, Jie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [32] Fault feature extraction of rolling element bearing based on improved infogram and MOMEDA
    Xia J.
    Yu M.
    Bai Y.
    Liu K.
    Lü Q.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (04): : 26 - 32
  • [33] Fault diagnosis method for rolling bearing on shearer arm based on deep transfer learning
    Zhang X.
    Pan G.
    Guo H.
    Mao Q.
    Fan H.
    Wan X.
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2022, 50 (04): : 256 - 263
  • [34] Multi-Scale Rolling Bearing Fault Diagnosis Method Based on Transfer Learning
    Yin, Zhenyu
    Zhang, Feiqing
    Xu, Guangyuan
    Han, Guangjie
    Bi, Yuanguo
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [35] A reinforcement transfer learning method based on a policy gradient for rolling bearing fault diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Wu, Zhenghong
    Xu, Jun
    Zhang, Jianjun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (06)
  • [36] Research on Rolling Bearing Fault Diagnosis Method Based on Generative Adversarial and Transfer Learning
    Pei, Xin
    Su, Shaohui
    Jiang, Linbei
    Chu, Changyong
    Gong, Lei
    Yuan, Yiming
    PROCESSES, 2022, 10 (08)
  • [37] Fault diagnosis method of rolling bearing of mine main fan based on transfer learning
    Cui, Wei
    Meng, Guoying
    Wan, Xingwei
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2024, 52 : 280 - 287
  • [38] Kurtosis filter in feature extraction for incipient motor bearing fault diagnosis
    Liang, Y.-C., 1600, Editorial Department of Electric Machines and Control (18):
  • [39] Research on Feature Extraction and Fault Diagnosis Method for Rolling Bearing Vibration Signals Based on Improved FDM-SVD and CYCBD
    Yang, Jingzong
    SYMMETRY-BASEL, 2024, 16 (05):
  • [40] A novel feature adaptive extraction method based on deep learning for bearing fault diagnosis
    Zhang, Tian
    Liu, Shulin
    Wei, Yuan
    Zhang, Hongli
    MEASUREMENT, 2021, 185