Min-infinite divisibility of the bivariate Marshall-Olkin copulas

被引:1
|
作者
Shenkman, Natalia [1 ]
机构
[1] Tech Univ Munich, Dept Math, D-85747 Garching, Germany
关键词
Marshall-Olkin copula; min-infinite divisibility; RCSI; TP2; MULTIVARIATE DISTRIBUTIONS; MODEL;
D O I
10.1080/03610926.2020.1747080
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There are many well-known bivariate distributions, such as the normal distribution, for which the question of whether they are max- or min-infinite divisible was settled a long time ago. However, despite its popularity, the bivariate Marshall-Olkin family of copulas was never the target of such an investigation, presumably due to the deterrent character of its density. Herein, we show that the challenges faced can be overcome with ease thanks to a convenient factorization.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 50 条
  • [31] On the Marshall-Olkin extended distributions
    Castellares, Fredy
    Lemonte, Artur J.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (15) : 4537 - 4555
  • [32] Default models based on scale mixtures of Marshall-Olkin copulas: properties and applications
    Bernhart, German
    Anel, Marcos Escobar
    Mai, Jan-Frederik
    Scherer, Matthias
    METRIKA, 2013, 76 (02) : 179 - 203
  • [33] The Marshall-Olkin Frechet Distribution
    Krishna, E.
    Jose, K. K.
    Alice, T.
    Ristic, Miroslav M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (22) : 4091 - 4107
  • [34] Statistical analysis of bivariate failure time data with Marshall-Olkin Weibull models
    Li, Yang
    Sun, Jianguo
    Song, Shuguang
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 2041 - 2050
  • [35] Fisher Information in Censored Samples from the Marshall-Olkin Bivariate Exponential Distribution
    Nagaraja, H. N.
    He, Qinying
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (19) : 4172 - 4184
  • [36] Objective Bayesian analysis of Marshall-Olkin bivariate Weibull distribution with partial information
    Panwar, M. S.
    Barnwal, Vikas
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (15) : 5331 - 5352
  • [37] Marshall-Olkin q-Weibull distribution and max-min processes
    Jose, K. K.
    Naik, Shanoja R.
    Ristic, Miroslav M.
    STATISTICAL PAPERS, 2010, 51 (04) : 837 - 851
  • [38] On the Marshall-Olkin transformation as a skewing mechanism
    Rubio, F. J.
    Steel, M. F. J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (07) : 2251 - 2257
  • [39] Marshall-Olkin distributions: a bibliometric study
    Jesus Gonzalez-Hernandez, Isidro
    Granillo-Macias, Rafael
    Rondero-Guerrero, Carlos
    Simon-Marmolejo, Isaias
    SCIENTOMETRICS, 2021, 126 (11) : 9005 - 9029
  • [40] Kumaraswamy Marshall-Olkin Exponential distribution
    George, Roshini
    Thobias, S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (08) : 1920 - 1937