The Marshall-Olkin Frechet Distribution

被引:65
|
作者
Krishna, E. [1 ]
Jose, K. K. [2 ]
Alice, T. [3 ]
Ristic, Miroslav M. [4 ]
机构
[1] St Josephs Coll Women, Dept Stat, Alappuzha, Kerala, India
[2] St Thomas Coll, Dept Stat, Pala 686574, Kerala, India
[3] Vimala Coll, Dept Stat, Trichur, Kerala, India
[4] Univ Nis, Fac Sci & Math, Nish, Serbia
关键词
Compounding; Estimation; Frechet distribution; Marshall-Olkin distribution; Proportional odds model; Survival analysis; Primary; 60E; Secondary; 62P99;
D O I
10.1080/03610926.2011.648785
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new distribution, namely Marshall-Olkin Frechet distribution. The probability density and hazard rate functions are derived and their shape properties are considered. Expressions for the nth moments are given. Various results with respect to quantiles, Renyi entropy and order statistics are obtained. The unknown parameters of the new distribution are estimated using the maximum likelihood estimation method adopting three different iterative procedures. The model is applied on a real data set on survival times. [Supplementary materials are available for this article. Go to the publisher's online edition of Communications in StatisticsTheory and Methods for the following free supplemental resource: A file that will allow the random variables from MOF distribution to be generated.]
引用
收藏
页码:4091 / 4107
页数:17
相关论文
共 50 条
  • [1] The Exponentiated Marshall-Olkin Frechet Distribution
    Mansour, Mahmoud M.
    Abd Elrazik, Enayat M.
    Butt, Nadeem Shafique
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (01) : 57 - 74
  • [2] Applications of Marshall-Olkin Frechet Distribution
    Krishna, E.
    Jose, K. K.
    Ristic, Miroslav M.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (01) : 76 - 89
  • [3] Kumaraswamy Marshall-Olkin Exponential distribution
    George, Roshini
    Thobias, S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (08) : 1920 - 1937
  • [4] The Marshall-Olkin generalized gamma distribution
    Barriga, Gladys D. C.
    Cordeiro, Gauss M.
    Dey, Dipak K.
    Cancho, Vicente G.
    Louzada, Francisco
    Suzuki, Adriano K.
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2018, 25 (03) : 245 - 261
  • [5] Marshall-Olkin generalized exponential distribution
    Ristić M.M.
    Kundu D.
    [J]. METRON, 2015, 73 (3) : 317 - 333
  • [6] The Marshall-Olkin exponential Weibull distribution
    Pogany, Tibor K.
    Saboor, Abdus
    Provost, Serge
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (06): : 1579 - 1594
  • [7] THE BETA MARSHALL-OLKIN LOMAX DISTRIBUTION
    Tablada, Claudio J.
    Cordeiro, Gauss M.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2019, 17 (03) : 321 - 344
  • [8] On Marshall-Olkin Extended Weibull Distribution
    Hanan Haj Ahmad
    Omar M. Bdair
    M. Ahsanullah
    [J]. Journal of Statistical Theory and Applications, 2017, 16 (1): : 1 - 17
  • [9] On the Marshall-Olkin extended Weibull distribution
    Cordeiro, Gauss M.
    Lemonte, Artur J.
    [J]. STATISTICAL PAPERS, 2013, 54 (02) : 333 - 353
  • [10] THE MARSHALL-OLKIN GOMPERTZ DISTRIBUTION: PROPERTIES AND APPLICATIONS
    Eghwerido, Joseph Thomas
    Ogbo, Joel Oruaoghene
    Omotoye, Adebola Evelyn
    [J]. STATISTICA, 2021, 81 (02) : 183 - 215