The Marshall-Olkin Frechet Distribution

被引:65
|
作者
Krishna, E. [1 ]
Jose, K. K. [2 ]
Alice, T. [3 ]
Ristic, Miroslav M. [4 ]
机构
[1] St Josephs Coll Women, Dept Stat, Alappuzha, Kerala, India
[2] St Thomas Coll, Dept Stat, Pala 686574, Kerala, India
[3] Vimala Coll, Dept Stat, Trichur, Kerala, India
[4] Univ Nis, Fac Sci & Math, Nish, Serbia
关键词
Compounding; Estimation; Frechet distribution; Marshall-Olkin distribution; Proportional odds model; Survival analysis; Primary; 60E; Secondary; 62P99;
D O I
10.1080/03610926.2011.648785
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new distribution, namely Marshall-Olkin Frechet distribution. The probability density and hazard rate functions are derived and their shape properties are considered. Expressions for the nth moments are given. Various results with respect to quantiles, Renyi entropy and order statistics are obtained. The unknown parameters of the new distribution are estimated using the maximum likelihood estimation method adopting three different iterative procedures. The model is applied on a real data set on survival times. [Supplementary materials are available for this article. Go to the publisher's online edition of Communications in StatisticsTheory and Methods for the following free supplemental resource: A file that will allow the random variables from MOF distribution to be generated.]
引用
收藏
页码:4091 / 4107
页数:17
相关论文
共 50 条
  • [21] The Marshall-Olkin Extended Power Lomax Distribution with Applications
    Gillariose, Jiju
    Tomy, Lishamol
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2020, 16 (02) : 331 - 341
  • [22] On Marshall-Olkin type distribution with effect of shock magnitude
    Ozkut, Murat
    Bayramoglu , Ismihan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 271 : 150 - 162
  • [23] On the Marshall-Olkin extended distributions
    Castellares, Fredy
    Lemonte, Artur J.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (15) : 4537 - 4555
  • [24] Recent Developments About Marshall-Olkin Bivariate Distribution
    Bayramoglu, Ismihan
    Ozkut, Murat
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (04)
  • [25] The Weibull Marshall-Olkin Lindley distribution: properties and estimation
    Afify, Ahmed Z.
    Nassar, Mazen
    Cordeiro, Gauss M.
    Kumar, Devendra
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 192 - 204
  • [26] Testing for the Marshall-Olkin extended form of the Weibull distribution
    Caroni, Chrys
    [J]. STATISTICAL PAPERS, 2010, 51 (02) : 325 - 336
  • [27] BAYES ESTIMATION FOR THE MARSHALL-OLKIN EXPONENTIAL-DISTRIBUTION
    PENA, EA
    GUPTA, AK
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1990, 52 (02): : 379 - 389
  • [28] The Marshall-Olkin Modified Lindley Distribution: Properties and Applications
    Gillariose, Jiju
    Tomy, Lishamol
    Jamal, Farrukh
    Chesneau, Christophe
    [J]. JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2020, 13 (01): : 177 - 198
  • [29] Bayes estimation for the Marshall-Olkin bivariate Weibull distribution
    Kundu, Debasis
    Gupta, Arjun K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) : 271 - 281
  • [30] Marshall-Olkin Esscher transformed Laplace distribution and processes
    George, Dais
    George, Sebastian
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2013, 27 (02) : 162 - 184