Min-infinite divisibility of the bivariate Marshall-Olkin copulas

被引:1
|
作者
Shenkman, Natalia [1 ]
机构
[1] Tech Univ Munich, Dept Math, D-85747 Garching, Germany
关键词
Marshall-Olkin copula; min-infinite divisibility; RCSI; TP2; MULTIVARIATE DISTRIBUTIONS; MODEL;
D O I
10.1080/03610926.2020.1747080
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There are many well-known bivariate distributions, such as the normal distribution, for which the question of whether they are max- or min-infinite divisible was settled a long time ago. However, despite its popularity, the bivariate Marshall-Olkin family of copulas was never the target of such an investigation, presumably due to the deterrent character of its density. Herein, we show that the challenges faced can be overcome with ease thanks to a convenient factorization.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 50 条
  • [41] The Marshall-Olkin generalized gamma distribution
    Barriga, Gladys D. C.
    Cordeiro, Gauss M.
    Dey, Dipak K.
    Cancho, Vicente G.
    Louzada, Francisco
    Suzuki, Adriano K.
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2018, 25 (03) : 245 - 261
  • [42] Marshall-Olkin generalized exponential distribution
    Ristić M.M.
    Kundu D.
    [J]. METRON, 2015, 73 (3) : 317 - 333
  • [43] The Marshall-Olkin exponential Weibull distribution
    Pogany, Tibor K.
    Saboor, Abdus
    Provost, Serge
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (06): : 1579 - 1594
  • [44] The Exponentiated Marshall-Olkin Frechet Distribution
    Mansour, Mahmoud M.
    Abd Elrazik, Enayat M.
    Butt, Nadeem Shafique
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (01) : 57 - 74
  • [45] Recent developments in Marshall-Olkin distributions
    Gillariose, Jiju
    Tomy, Lishamol
    Chesneau, Christophe
    Jose, Manju
    [J]. CONTRIBUTIONS TO MATHEMATICS, 2020, 2 : 71 - 75
  • [46] THE BETA MARSHALL-OLKIN LOMAX DISTRIBUTION
    Tablada, Claudio J.
    Cordeiro, Gauss M.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2019, 17 (03) : 321 - 344
  • [47] Marshall-Olkin distributions: a bibliometric study
    Isidro Jesús González-Hernández
    Rafael Granillo-Macías
    Carlos Rondero-Guerrero
    Isaías Simón-Marmolejo
    [J]. Scientometrics, 2021, 126 : 9005 - 9029
  • [48] Some Variations of EM Algorithms for Marshall-Olkin Bivariate Pareto Distribution with Location and Scale
    Dey, Arabin Kumar
    Paul, Biplab
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2019, 13 (01)
  • [49] On Marshall-Olkin Extended Weibull Distribution
    Hanan Haj Ahmad
    Omar M. Bdair
    M. Ahsanullah
    [J]. Journal of Statistical Theory and Applications, 2017, 16 (1): : 1 - 17
  • [50] Marshall-Olkin Lehmann Lomax Distribution: Theory, Statistical Properties, Copulas and Real Data Modeling
    Aboraya, Mohamed
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2021, 17 (02) : 509 - 530