Interaction-free evolution in the presence of time-dependent Hamiltonians

被引:13
|
作者
Chruscinski, Dariusz [1 ]
Messina, Antonino [2 ]
Militello, Benedetto [2 ]
Napoli, Anna [2 ]
机构
[1] Nicolaus Copernicus Univ, Inst Phys, Fac Phys Astron & Informat, PL-87100 Torun, Poland
[2] Univ Palermo, Dipartimento Fis & Chim, I-90123 Palermo, Italy
关键词
POPULATION TRANSFER; QUANTUM; MANIPULATION; DYNAMICS; STATES; ATOMS;
D O I
10.1103/PhysRevA.91.042123
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The generalization of the concept of interaction-free evolutions (IFE) [Napoli et al., Phys. Rev. A 89, 062104 (2014)] to the case of time-dependent Hamiltonians is discussed. It turns out that the time-dependent case allows for much richer structures of interaction-free states and interaction-free subspaces. The general condition for the occurrence of IFE is found and exploited to analyze specific situations. Several examples are presented, each one associated to a class of Hamiltonians with specific features.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Unitarity of the time-evolution and observability of non-Hermitian Hamiltonians for time-dependent Dyson maps
    Luiz, F. S.
    de Ponte, M. A.
    Moussa, M. H. Y.
    PHYSICA SCRIPTA, 2020, 95 (06)
  • [42] State transfer with time-dependent Hamiltonians in waveguide arrays
    Weimann, S.
    Kay, A.
    Keil, R.
    Nolte, S.
    Szameit, A.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [43] UNITARY PROPAGATORS FOR TIME-DEPENDENT HAMILTONIANS WITH SINGULAR POTENTIALS
    HUGHES, RJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 193 (02) : 447 - 464
  • [44] Symplectic invariant method for time-dependent quadratic Hamiltonians
    Antoine, C.
    EPL, 2012, 100 (03)
  • [45] A multidimensional Birkhoff theorem for time-dependent Tonelli Hamiltonians
    Arnaud, Marie-Claude
    Venturelli, Andrea
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (04)
  • [46] Tomography of time-dependent quantum Hamiltonians with machine learning
    Han, Chen-Di
    Glaz, Bryan
    Haile, Mulugeta
    Lai, Ying-Cheng
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [47] ALTERNATIVE LAGRANGIANS AND FOULED HAMILTONIANS FOR THE TIME-DEPENDENT OSCILLATOR
    PROFILO, G
    SOLIANI, G
    ANNALS OF PHYSICS, 1994, 229 (01) : 160 - 176
  • [48] A multidimensional Birkhoff theorem for time-dependent Tonelli Hamiltonians
    Marie-Claude Arnaud
    Andrea Venturelli
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [49] BOUNDEDNESS OF KINETIC-ENERGY FOR TIME-DEPENDENT HAMILTONIANS
    HUANG, MJ
    LAVINE, RB
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (01) : 189 - 210
  • [50] Time-dependent Hamiltonians and geometry of operators generated by them
    Pal, Kunal
    Pal, Kuntal
    PHYSICAL REVIEW E, 2025, 111 (01)