A multidimensional Birkhoff theorem for time-dependent Tonelli Hamiltonians

被引:0
|
作者
Marie-Claude Arnaud
Andrea Venturelli
机构
[1] Avignon Université,Laboratoire de Mathématiques d’Avignon (EA 2151)
关键词
37J50; 70H20; 53D12;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a closed and connected manifold, H:T∗M×R/Z→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H:T^*M\times {{\mathbb {R}}}/\mathbb {Z}\rightarrow \mathbb {R}$$\end{document} a Tonelli 1-periodic Hamiltonian and L⊂T∗M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}\subset T^*M$$\end{document} a Lagrangian submanifold Hamiltonianly isotopic to the zero section. We prove that if L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}$$\end{document} is invariant by the time-one map of H, then L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}$$\end{document} is a graph over M. An interesting consequence in the autonomous case is that in this case, L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}$$\end{document} is invariant by all the time t maps of the Hamiltonian flow of H.
引用
收藏
相关论文
共 50 条
  • [1] A multidimensional Birkhoff theorem for time-dependent Tonelli Hamiltonians
    Arnaud, Marie-Claude
    Venturelli, Andrea
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (04)
  • [2] SYMMETRIES OF TIME-DEPENDENT HAMILTONIANS
    STEEB, WH
    [J]. LETTERE AL NUOVO CIMENTO, 1980, 28 (16): : 547 - 550
  • [3] THE BIRKHOFF THEOREM IN MULTIDIMENSIONAL GRAVITY
    BRONNIKOV, KA
    MELNIKOV, VN
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (05) : 465 - 474
  • [4] ON TIME-DEPENDENT QUADRATIC QUANTUM HAMILTONIANS
    WOLF, KB
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 40 (03) : 419 - 431
  • [5] Supercanonical transformations and time-dependent Hamiltonians
    Anzaldo-Meneses, A.
    [J]. EPL, 2021, 133 (02)
  • [6] A remark on transformations of time-dependent Hamiltonians
    Guha, P
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (4-5) : 505 - 509
  • [7] ON THE BILINEAR APPROXIMATION FOR TIME-DEPENDENT HAMILTONIANS
    ECHAVE, J
    FERNANDEZ, FM
    CASTRO, EA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (02): : 1188 - 1193
  • [8] Integrable Time-Dependent Quantum Hamiltonians
    Sinitsyn, Nikolai A.
    Yuzbashyan, Emil A.
    Chernyak, Vladimir Y.
    Patra, Aniket
    Sun, Chen
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (19)
  • [9] ON THE TIME EVOLUTION OPERATOR FOR TIME-DEPENDENT QUADRATIC HAMILTONIANS
    FERNANDEZ, FM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) : 1522 - 1524
  • [10] Inverse problem of quadratic time-dependent Hamiltonians
    Guo Guang-Jie
    Meng Yan
    Chang Hong
    Duan Hui-Zeng
    Di Bing
    [J]. CHINESE PHYSICS B, 2015, 24 (08)