Let M be a closed and connected manifold, H:T∗M×R/Z→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H:T^*M\times {{\mathbb {R}}}/\mathbb {Z}\rightarrow \mathbb {R}$$\end{document} a Tonelli 1-periodic Hamiltonian and L⊂T∗M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathscr {L}}\subset T^*M$$\end{document} a Lagrangian submanifold Hamiltonianly isotopic to the zero section. We prove that if L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathscr {L}}$$\end{document} is invariant by the time-one map of H, then L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathscr {L}}$$\end{document} is a graph over M. An interesting consequence in the autonomous case is that in this case, L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathscr {L}}$$\end{document} is invariant by all the time t maps of the Hamiltonian flow of H.
机构:
Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USALos Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
Sinitsyn, Nikolai A.
Yuzbashyan, Emil A.
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USALos Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
Yuzbashyan, Emil A.
Chernyak, Vladimir Y.
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA
Wayne State Univ, Dept Math, 5101 Cass Ave, Detroit, MI 48202 USALos Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
Chernyak, Vladimir Y.
Patra, Aniket
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USALos Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
Patra, Aniket
Sun, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
Texas A&M Univ, Dept Phys, College Stn, TX 77840 USALos Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
机构:
Xingtai Univ, Dept Phys, Xingtai 054001, Peoples R China
Xingtai Univ, Electromagnet Transport Mat Lab, Xingtai 054001, Peoples R ChinaXingtai Univ, Dept Phys, Xingtai 054001, Peoples R China
Guo Guang-Jie
Meng Yan
论文数: 0引用数: 0
h-index: 0
机构:
Xingtai Univ, Dept Phys, Xingtai 054001, Peoples R China
Xingtai Univ, Electromagnet Transport Mat Lab, Xingtai 054001, Peoples R ChinaXingtai Univ, Dept Phys, Xingtai 054001, Peoples R China
Meng Yan
Chang Hong
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Coll Phys, Shijiazhuang 050024, Peoples R China
Hebei Normal Univ, Hebei Adv Thin Films Lab, Shijiazhuang 050024, Peoples R ChinaXingtai Univ, Dept Phys, Xingtai 054001, Peoples R China
Chang Hong
Duan Hui-Zeng
论文数: 0引用数: 0
h-index: 0
机构:
Xingtai Univ, Dept Phys, Xingtai 054001, Peoples R China
Xingtai Univ, Electromagnet Transport Mat Lab, Xingtai 054001, Peoples R ChinaXingtai Univ, Dept Phys, Xingtai 054001, Peoples R China
Duan Hui-Zeng
Di Bing
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Coll Phys, Shijiazhuang 050024, Peoples R China
Hebei Normal Univ, Hebei Adv Thin Films Lab, Shijiazhuang 050024, Peoples R ChinaXingtai Univ, Dept Phys, Xingtai 054001, Peoples R China