A multidimensional Birkhoff theorem for time-dependent Tonelli Hamiltonians

被引:0
|
作者
Arnaud, Marie-Claude [1 ]
Venturelli, Andrea [1 ]
机构
[1] Avignon Univ, Lab Math Avignon EA 2151, F-84018 Avignon, France
关键词
GENERATING-FUNCTIONS; GEOMETRY; SYSTEMS; INTERSECTIONS;
D O I
10.1007/s00526-017-1210-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a closed and connected manifold, H : T*M x R/Z -> R a Tonelli 1-periodic Hamiltonian and L subset of T * M a Lagrangian submanifold Hamiltonianly isotopic to the zero section. We prove that if L is invariant by the time- one map of H, then L is a graph over M. An interesting consequence in the autonomous case is that in this case, L is invariant by all the time t maps of the Hamiltonian flow of H.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A multidimensional Birkhoff theorem for time-dependent Tonelli Hamiltonians
    Marie-Claude Arnaud
    Andrea Venturelli
    [J]. Calculus of Variations and Partial Differential Equations, 2017, 56
  • [2] SYMMETRIES OF TIME-DEPENDENT HAMILTONIANS
    STEEB, WH
    [J]. LETTERE AL NUOVO CIMENTO, 1980, 28 (16): : 547 - 550
  • [3] THE BIRKHOFF THEOREM IN MULTIDIMENSIONAL GRAVITY
    BRONNIKOV, KA
    MELNIKOV, VN
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (05) : 465 - 474
  • [4] ON TIME-DEPENDENT QUADRATIC QUANTUM HAMILTONIANS
    WOLF, KB
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 40 (03) : 419 - 431
  • [5] Supercanonical transformations and time-dependent Hamiltonians
    Anzaldo-Meneses, A.
    [J]. EPL, 2021, 133 (02)
  • [6] A remark on transformations of time-dependent Hamiltonians
    Guha, P
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (4-5) : 505 - 509
  • [7] ON THE BILINEAR APPROXIMATION FOR TIME-DEPENDENT HAMILTONIANS
    ECHAVE, J
    FERNANDEZ, FM
    CASTRO, EA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (02): : 1188 - 1193
  • [8] Integrable Time-Dependent Quantum Hamiltonians
    Sinitsyn, Nikolai A.
    Yuzbashyan, Emil A.
    Chernyak, Vladimir Y.
    Patra, Aniket
    Sun, Chen
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (19)
  • [9] ON THE TIME EVOLUTION OPERATOR FOR TIME-DEPENDENT QUADRATIC HAMILTONIANS
    FERNANDEZ, FM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) : 1522 - 1524
  • [10] Inverse problem of quadratic time-dependent Hamiltonians
    Guo Guang-Jie
    Meng Yan
    Chang Hong
    Duan Hui-Zeng
    Di Bing
    [J]. CHINESE PHYSICS B, 2015, 24 (08)