New power-law tailed distributions emerging in κ-statistics

被引:19
|
作者
Kaniadakis, G. [1 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
KANIADAKIS STATISTICS; DEFORMED EXPONENTIALS; ENTROPY; MODEL; EQUILIBRIUM; TSALLIS; PLASMA;
D O I
10.1209/0295-5075/133/10002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over the last two decades, it has been argued that the Lorentz transformation mechanism, which imposes the generalization of Newton's classical mechanics into Einstein's special relativity, implies a generalization, or deformation, of the ordinary statistical mechanics. The exponential function, which defines the Boltzmann factor, emerges properly deformed within this formalism. Starting from this, the so-called kappa-deformed exponential function, we introduce new classes of statistical distributions emerging as the kappa-deformed versions of already known distribution as the Generalized Gamma, Weibull, Logistic ones which can be adopted in the analysis of statistical data that exhibit power-law tails. Copyright (c) 2021 EPLA
引用
收藏
页数:7
相关论文
共 50 条
  • [31] DISTRIBUTIONS WITH POWER-LAW DECREASE AND THE APPROACH TO EQUILIBRIUM
    ALEXANIAN, M
    TUTHILL, G
    PHYSICAL REVIEW A, 1982, 25 (06): : 3217 - 3222
  • [32] POWER-LAW DISTRIBUTIONS IN BINNED EMPIRICAL DATA
    Virkar, Yogesh
    Clauset, Aaron
    ANNALS OF APPLIED STATISTICS, 2014, 8 (01): : 89 - 119
  • [33] . Power-law quantum distributions in protoneutron stars
    Gervino, G.
    Lavagno, A.
    Pigato, D.
    6TH INTERNATIONAL WORKSHOP DICE2012 SPACETIME - MATTER - QUANTUM MECHANICS: FROM THE PLANCK SCALE TO EMERGENT PHENOMENA, 2013, 442
  • [34] Microcanonical foundation for systems with power-law distributions
    Abe, S
    Rajagopal, AK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48): : 8733 - 8738
  • [35] Power-law distributions in noisy dynamical systems
    Wilkinson, Michael
    Guichardaz, Robin
    Pradas, Marc
    Pumir, Alain
    EPL, 2015, 111 (05)
  • [36] Power-law distributions of urban tree cover
    Hernandez, Edward Russel
    Sy, Patricia Breanne
    Cirunay, Michelle T.
    Batac, Rene C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 643
  • [37] Econophysical anchoring of unimodal power-law distributions
    Eliazar, Iddo I.
    Cohen, Morrel H.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (36)
  • [38] Power-law velocity distributions in granular gases
    Ben-Naim, E
    Machta, B
    Machta, J
    PHYSICAL REVIEW E, 2005, 72 (02):
  • [39] On estimating the exponent of power-law frequency distributions
    White, Ethan P.
    Enquist, Brian J.
    Green, Jessica L.
    ECOLOGY, 2008, 89 (04) : 905 - 912
  • [40] Applications of power-law (fractal) distributions in geology
    Turcotte, DL
    GIS and Spatial Analysis, Vol 1and 2, 2005, : 36 - 36