New power-law tailed distributions emerging in κ-statistics

被引:19
|
作者
Kaniadakis, G. [1 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
KANIADAKIS STATISTICS; DEFORMED EXPONENTIALS; ENTROPY; MODEL; EQUILIBRIUM; TSALLIS; PLASMA;
D O I
10.1209/0295-5075/133/10002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over the last two decades, it has been argued that the Lorentz transformation mechanism, which imposes the generalization of Newton's classical mechanics into Einstein's special relativity, implies a generalization, or deformation, of the ordinary statistical mechanics. The exponential function, which defines the Boltzmann factor, emerges properly deformed within this formalism. Starting from this, the so-called kappa-deformed exponential function, we introduce new classes of statistical distributions emerging as the kappa-deformed versions of already known distribution as the Generalized Gamma, Weibull, Logistic ones which can be adopted in the analysis of statistical data that exhibit power-law tails. Copyright (c) 2021 EPLA
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Gibbsian theory of power-law distributions
    Treumann, R. A.
    Jaroschek, C. H.
    PHYSICAL REVIEW LETTERS, 2008, 100 (15)
  • [22] On Possible Origins of Power-law Distributions
    Wilk, Grzegorz
    Wlodarczyk, Zbigniew
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 893 - 896
  • [23] Modeling of flows with power-law spectral densities and power-law distributions of flow intensities
    Kaulakys, Bronislovas
    Alaburda, Miglius
    Gontis, Vygintas
    Meskauskas, Tadas
    Ruseckas, Julius
    TRAFFIC AND GRANULAR FLOW ' 05, 2007, : 603 - +
  • [24] A new tool to derive simultaneously exponent and extremes of power-law distributions
    Pezzuto, S.
    Coletta, A.
    Klessen, R. S.
    Schisano, E.
    Benedettini, M.
    Elia, D.
    Molinari, S.
    Soler, J. D.
    Traficante, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 525 (03) : 4744 - 4760
  • [25] Power-law statistics for avalanches in a martensitic transformation
    Ahluwalia, R
    Ananthakrishna, G
    PHYSICAL REVIEW LETTERS, 2001, 86 (18) : 4076 - 4079
  • [26] The applicability of power-law frequency statistics to floods
    Malamud, Bruce D.
    Turcotte, Donald L.
    JOURNAL OF HYDROLOGY, 2006, 322 (1-4) : 168 - 180
  • [27] A Generalized notion of Sufficiency for Power-law Distributions
    Gayen, Atin
    Kumar, M. Ashok
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2185 - 2190
  • [28] Variability in the power-law distributions of rupture events
    Amitrano, D.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 205 (01): : 199 - 215
  • [29] Statistical mechanical foundations of power-law distributions
    Rajagopal, AK
    Abe, S
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 193 (1-4) : 73 - 83
  • [30] Fault size distributions - Are they really power-law?
    Nicol, A
    Walsh, JJ
    Watterson, J
    Gillespie, PA
    JOURNAL OF STRUCTURAL GEOLOGY, 1996, 18 (2-3) : 191 - 197