A Probability for Classification Based on the Dirichlet Process Mixture Model

被引:12
|
作者
Fuentes-Garcia, Ruth [2 ]
Mena, Ramses H. [3 ]
Walker, Stephen G. [1 ]
机构
[1] Univ Kent, Canterbury CT2 7NZ, Kent, England
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
[3] Univ Nacl Autonoma Mexico, IIMAS, Mexico City 04510, DF, Mexico
关键词
Classification; MCMC sampling; MDP model; DENSITY-ESTIMATION; PRIORS;
D O I
10.1007/s00357-010-9061-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide an explicit probability distribution for classification purposes when observations are viewed on the real line and classifications are to be based on numerical orderings. The classification model is derived from a Bayesian nonparametric mixture of Dirichlet process model; with some modifications. The resulting approach then more closely resembles a classical hierarchical grouping rule in that it depends on sums of squares of neighboring values. The proposed probability model for classification relies on a numerical procedure based on a reversible Markov chain Monte Carlo (MCMC) algorithm for determining the probabilities. Some numerical illustrations comparing with alternative ideas for classification are provided.
引用
收藏
页码:389 / 403
页数:15
相关论文
共 50 条
  • [41] The nested joint clustering via Dirichlet process mixture model
    Han, Shengtong
    Zhang, Hongmei
    Sheng, Wenhui
    Arshad, Hasan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (05) : 815 - 830
  • [42] Dirichlet Process Mixture of Mixtures Model for Unsupervised Subword Modeling
    Heck, Michael
    Sakti, Sakriani
    Nakamura, Satoshi
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (11) : 2027 - 2042
  • [43] Video annotation using hierarchical Dirichlet process mixture model
    Wu, Roung-Shiunn
    Li, Po-Chun
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3040 - 3048
  • [44] A Dirichlet-multinomial mixture model-based approach for daily solar radiation classification
    Frimane, Azeddine
    Aggour, Mohammed
    Ouhammou, Badr
    Bahmad, Lahoucine
    SOLAR ENERGY, 2018, 171 : 31 - 39
  • [45] Splitting and Merging Components of a Nonconjugate Dirichlet Process Mixture Model
    Jain, Sonia
    Neal, Radford M.
    BAYESIAN ANALYSIS, 2007, 2 (03): : 445 - 472
  • [46] A Dirichlet Process Mixture Model for Non-Ignorable Dropout
    Moore, Camille M.
    Carlson, Nichole E.
    MaWhinney, Samantha
    Kreidler, Sarah
    BAYESIAN ANALYSIS, 2020, 15 (04): : 1139 - 1167
  • [47] Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model
    Sun, Xing
    Yung, Nelson H. C.
    Lam, Edmund Y.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (09) : 2594 - 2599
  • [48] A Dirichlet process mixture model for the analysis of correlated binary responses
    Jara, Alejandro
    Garcia-Zattera, Maria Jose
    Lesaffre, Emmanuel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (11) : 5402 - 5415
  • [49] Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition
    Wang, Jia-Ching
    Lee, Yuan-Shan
    Chin, Yu-Hao
    Chen, Ying-Ren
    Hsieh, Wen-Chi
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2015, 6 (03) : 261 - 271
  • [50] Process Monitoring with Global Probability Boundary-Based on Gaussian Mixture Model
    Wu, Qun
    Du, Wenli
    Qian, Feng
    Ma, Qingsong
    2013 10TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2013, : 789 - 793