A Dirichlet process mixture model for the analysis of correlated binary responses

被引:26
|
作者
Jara, Alejandro [1 ]
Garcia-Zattera, Maria Jose [1 ]
Lesaffre, Emmanuel [1 ]
机构
[1] Catholic Univ Louvain, Ctr Biostat, B-3000 Louvain, Belgium
关键词
multivariate binomial data; latent variable representation; probit models; Dirichlet process; Markov chain monte carlo;
D O I
10.1016/j.csda.2006.09.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The multivariate probit model is a popular choice for modelling correlated binary responses. It assumes an underlying multivariate normal distribution dichotomized to yield a binary response vector. Other choices for the latent distribution have been suggested, but basically all models assume homogeneity in the correlation structure across the subjects. When interest lies in the association structure, relaxing this homogeneity assumption could be useful. The latent multivariate normal model is replaced by a location and association mixture model defined by a Dirichlet process. Attention is paid to the parameterization of the covariance matrix in order to make the Bayesian computations convenient. The approach is illustrated on a simulated data set and applied to oral health data from the Signal Tandmobiel (R) study to examine the hypothesis that caries is mainly a spatially local disease. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:5402 / 5415
页数:14
相关论文
共 50 条
  • [1] Comparative Analysis of Improved Dirichlet Process Mixture Model
    Wu, Lili
    Fam, Pei Shan
    Ali, Majid Khan Majahar
    Tian, Ying
    Ismail, Mohd. Tahir
    Jamaludin, Siti Zulaikha Mohd
    [J]. MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (06): : 1099 - 1118
  • [2] Likelihood learning in modified Dirichlet Process Mixture Model for video analysis
    Kumaran, Santhosh Kelathodi
    Chakravarty, Adyasha
    Dogra, Debi Prosad
    Roy, Partha Pratim
    [J]. PATTERN RECOGNITION LETTERS, 2019, 128 : 211 - 219
  • [3] Analysis of the Maximal a Posteriori Partition in the Gaussian Dirichlet Process Mixture Model
    Rajkowski, Lukasz
    [J]. BAYESIAN ANALYSIS, 2019, 14 (02): : 477 - 494
  • [4] A Dirichlet process mixture regression model for the analysis of competing risk events
    Ungolo, Francesco
    van den Heuvel, Edwin R.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2024, 116 : 95 - 113
  • [5] Research on dirichlet process mixture model for clustering
    Zhang, Biyao
    Zhang, Kaisong
    Zhong, Luo
    Zhang, Xuanya
    [J]. Ingenierie des Systemes d'Information, 2019, 24 (02): : 183 - 189
  • [6] A Dirichlet Process Mixture Model for Spherical Data
    Straub, Julian
    Chang, Jason
    Freifeld, Oren
    Fisher, John W., III
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 930 - 938
  • [7] An improved model for spatially correlated binary responses
    Hoeting, JA
    Leecaster, M
    Bowden, D
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2000, 5 (01) : 102 - 114
  • [8] Nonparametric empirical Bayes for the Dirichlet process mixture model
    Jon D. McAuliffe
    David M. Blei
    Michael I. Jordan
    [J]. Statistics and Computing, 2006, 16 : 5 - 14
  • [9] Graph Clustering Using Dirichlet Process Mixture Model
    Atastina, Imelda
    Sitohang, Benhard
    Putri, G. A. S.
    Moertini, Veronica S.
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE), 2017,
  • [10] A Probability for Classification Based on the Dirichlet Process Mixture Model
    Ruth Fuentes–García
    Ramsés H. Mena
    Stephen G. Walker
    [J]. Journal of Classification, 2010, 27 : 389 - 403