A Dirichlet process mixture model for the analysis of correlated binary responses

被引:26
|
作者
Jara, Alejandro [1 ]
Garcia-Zattera, Maria Jose [1 ]
Lesaffre, Emmanuel [1 ]
机构
[1] Catholic Univ Louvain, Ctr Biostat, B-3000 Louvain, Belgium
关键词
multivariate binomial data; latent variable representation; probit models; Dirichlet process; Markov chain monte carlo;
D O I
10.1016/j.csda.2006.09.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The multivariate probit model is a popular choice for modelling correlated binary responses. It assumes an underlying multivariate normal distribution dichotomized to yield a binary response vector. Other choices for the latent distribution have been suggested, but basically all models assume homogeneity in the correlation structure across the subjects. When interest lies in the association structure, relaxing this homogeneity assumption could be useful. The latent multivariate normal model is replaced by a location and association mixture model defined by a Dirichlet process. Attention is paid to the parameterization of the covariance matrix in order to make the Bayesian computations convenient. The approach is illustrated on a simulated data set and applied to oral health data from the Signal Tandmobiel (R) study to examine the hypothesis that caries is mainly a spatially local disease. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:5402 / 5415
页数:14
相关论文
共 50 条
  • [41] DPNuc: Identifying Nucleosome Positions Based on the Dirichlet Process Mixture Model
    Chen, Huidong
    Guan, Jihong
    Zhou, Shuigeng
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (06) : 1236 - 1247
  • [42] Clustering disaggregated load profiles using a Dirichlet process mixture model
    Granell, Ramon
    Axon, Colin J.
    Wallom, David C. H.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2015, 92 : 507 - 516
  • [43] Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture
    Jensen, Mark J.
    Maheu, John M.
    [J]. JOURNAL OF ECONOMETRICS, 2014, 178 : 523 - 538
  • [44] Automatic video annotation using multimodal dirichlet process mixture model
    Velivelli, Atulya
    Huang, Thomas S.
    [J]. PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 1366 - 1371
  • [45] Outlier detection in traffic data based on the Dirichlet process mixture model
    Ngan, Henry Y. T.
    Yung, Nelson H. C.
    Yeh, Anthony G. O.
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2015, 9 (07) : 773 - 781
  • [46] Urban Activity Clustering Method Based on Dirichlet Process Mixture Model
    Chen, Zhong
    [J]. Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (06): : 247 - 252
  • [47] A Spatial Dirichlet Process Mixture Model for Clustering Population Genetics Data
    Reich, Brian J.
    Bondell, Howard D.
    [J]. BIOMETRICS, 2011, 67 (02) : 381 - 390
  • [48] A Dirichlet process mixture model for clustering longitudinal gene expression data
    Sun, Jiehuan
    Herazo-Maya, Jose D.
    Kaminski, Naftali
    Zhao, Hongyu
    Warren, Joshua L.
    [J]. STATISTICS IN MEDICINE, 2017, 36 (22) : 3495 - 3506
  • [49] HIV Haplotype Inference Using a Propagating Dirichlet Process Mixture Model
    Prabhakaran, Sandhya
    Rey, Melanie
    Zagordi, Osvaldo
    Beerenwinkel, Niko
    Roth, Volker
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (01) : 182 - 191
  • [50] Machinery Early Fault Detection Based on Dirichlet Process Mixture Model
    Ma, Bo
    Zhao, Yi
    Zhang, Ying
    Jiang, Qing Lei
    Hou, Xiu Qun
    [J]. IEEE ACCESS, 2019, 7 : 89226 - 89233