HIV Haplotype Inference Using a Propagating Dirichlet Process Mixture Model

被引:58
|
作者
Prabhakaran, Sandhya [1 ]
Rey, Melanie [1 ]
Zagordi, Osvaldo [2 ]
Beerenwinkel, Niko [3 ]
Roth, Volker [1 ]
机构
[1] Univ Basel, Dept Math & Comp Sci, CH-4056 Basel, Switzerland
[2] Univ Zurich, Inst Med Virol, CH-8057 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
HIV; haplotype inference; MCMC; 454 sequencing reads; RECONSTRUCTION; SAMPLE;
D O I
10.1109/TCBB.2013.145
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper presents a new computational technique for the identification of HIV haplotypes. HIV tends to generate many potentially drug-resistant mutants within the HIV-infected patient and being able to identify these different mutants is important for efficient drug administration. With the view of identifying the mutants, we aim at analyzing short deep sequencing data called reads. From a statistical perspective, the analysis of such data can be regarded as a nonstandard clustering problemdue to missing pairwise similarity measures between non-overlapping reads. To overcome this problemwe propagate a Dirichlet Process Mixture Model by sequentially updating the prior information from successive local analyses. The model is verified using both simulated and real sequencing data.
引用
收藏
页码:182 / 191
页数:10
相关论文
共 50 条
  • [1] Dirichlet process model for joint haplotype inference and GWAS
    Avinash Das Sahu
    Sridhar Hannenhalli
    BMC Proceedings, 6 (Suppl 6)
  • [2] Mean field inference for the Dirichlet process mixture model
    Zobay, O.
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 507 - 545
  • [3] Bayesian haplotype inference via the Dirichlet process
    Xing, Eric P.
    Jordan, Michael I.
    Sharan, Roded
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (03) : 267 - 284
  • [4] Study on hybrid sampling inference for dirichlet process mixture of Gaussian process model
    Lei, Ju-Yang
    Huang, Ke
    Xu, Hai-Xiang
    Shi, Xi-Zhi
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2010, 44 (02): : 271 - 275
  • [5] Distributed Inference for Dirichlet Process Mixture Models
    Ge, Hong
    Chen, Yutian
    Wan, Moquan
    Ghahramani, Zoubin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2276 - 2284
  • [6] Variational Inference of Dirichlet Process Mixture using Stochastic Gradient Ascent
    Lim, Kart-Leong
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 33 - 42
  • [7] Distributed MCMC Inference in Dirichlet Process Mixture Models Using Julia
    Dinari, Or
    Yu, Angel
    Freifeld, Oren
    Fisher, John W., III
    2019 19TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2019, : 518 - 525
  • [8] Dirichlet process mixture model based nonparametric Bayesian modeling and variational inference
    Fei, Zhengshun
    Liu, Kangling
    Huang, Bingqiang
    Zheng, Yongping
    Xiang, Xinjian
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3048 - 3051
  • [9] Simultaneous inference for multiple testing and clustering via a Dirichlet, process mixture model
    Dahl, David B.
    Mo, Qianxing
    Vannucci, Marina
    STATISTICAL MODELLING, 2008, 8 (01) : 23 - 39
  • [10] Graph Clustering Using Dirichlet Process Mixture Model
    Atastina, Imelda
    Sitohang, Benhard
    Putri, G. A. S.
    Moertini, Veronica S.
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE), 2017,