HIV Haplotype Inference Using a Propagating Dirichlet Process Mixture Model

被引:58
|
作者
Prabhakaran, Sandhya [1 ]
Rey, Melanie [1 ]
Zagordi, Osvaldo [2 ]
Beerenwinkel, Niko [3 ]
Roth, Volker [1 ]
机构
[1] Univ Basel, Dept Math & Comp Sci, CH-4056 Basel, Switzerland
[2] Univ Zurich, Inst Med Virol, CH-8057 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
HIV; haplotype inference; MCMC; 454 sequencing reads; RECONSTRUCTION; SAMPLE;
D O I
10.1109/TCBB.2013.145
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper presents a new computational technique for the identification of HIV haplotypes. HIV tends to generate many potentially drug-resistant mutants within the HIV-infected patient and being able to identify these different mutants is important for efficient drug administration. With the view of identifying the mutants, we aim at analyzing short deep sequencing data called reads. From a statistical perspective, the analysis of such data can be regarded as a nonstandard clustering problemdue to missing pairwise similarity measures between non-overlapping reads. To overcome this problemwe propagate a Dirichlet Process Mixture Model by sequentially updating the prior information from successive local analyses. The model is verified using both simulated and real sequencing data.
引用
收藏
页码:182 / 191
页数:10
相关论文
共 50 条
  • [31] A topic tracking oriented Dirichlet process mixture model
    Wang, Chan
    Wang, Xiao-Jie
    Yuan, Cai-Xia
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2012, 35 (03): : 91 - 94
  • [32] Comparative Analysis of Improved Dirichlet Process Mixture Model
    Wu, Lili
    Fam, Pei Shan
    Ali, Majid Khan Majahar
    Tian, Ying
    Ismail, Mohd. Tahir
    Jamaludin, Siti Zulaikha Mohd
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (06): : 1099 - 1118
  • [33] Nonparametric empirical Bayes for the Dirichlet process mixture model
    Jon D. McAuliffe
    David M. Blei
    Michael I. Jordan
    Statistics and Computing, 2006, 16 : 5 - 14
  • [34] A Probability for Classification Based on the Dirichlet Process Mixture Model
    Ruth Fuentes–García
    Ramsés H. Mena
    Stephen G. Walker
    Journal of Classification, 2010, 27 : 389 - 403
  • [35] Clustering with label constrained Dirichlet process mixture model
    Burhanuddin, Nurul Afiqah
    Adam, Mohd Bakri
    Ibrahim, Kamarulzaman
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 107
  • [36] A Probability for Classification Based on the Dirichlet Process Mixture Model
    Fuentes-Garcia, Ruth
    Mena, Ramses H.
    Walker, Stephen G.
    JOURNAL OF CLASSIFICATION, 2010, 27 (03) : 389 - 403
  • [37] Classification of pulsars with Dirichlet process Gaussian mixture model
    Ay, Fahrettin
    Ince, Gokhan
    Kamasak, Mustafa E.
    Eksi, K. Yavuz
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (01) : 713 - 722
  • [38] Nonparametric empirical Bayes for the Dirichlet process mixture model
    McAuliffe, JD
    Blei, DM
    Jordan, MI
    STATISTICS AND COMPUTING, 2006, 16 (01) : 5 - 14
  • [39] Dirichlet Process Mixture Model for Summarizing the Social Web
    Guan, Xinjun
    Yang, Ying
    Yang, Xinru
    Lin, Chen
    SOCIAL MEDIA PROCESSING, SMP 2015, 2015, 568 : 83 - 94
  • [40] Stylometric analyses using Dirichlet process mixture models
    Gill, Paramjit S.
    Swartz, Tim B.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (11) : 3665 - 3674