A Probability for Classification Based on the Dirichlet Process Mixture Model

被引:12
|
作者
Fuentes-Garcia, Ruth [2 ]
Mena, Ramses H. [3 ]
Walker, Stephen G. [1 ]
机构
[1] Univ Kent, Canterbury CT2 7NZ, Kent, England
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
[3] Univ Nacl Autonoma Mexico, IIMAS, Mexico City 04510, DF, Mexico
关键词
Classification; MCMC sampling; MDP model; DENSITY-ESTIMATION; PRIORS;
D O I
10.1007/s00357-010-9061-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide an explicit probability distribution for classification purposes when observations are viewed on the real line and classifications are to be based on numerical orderings. The classification model is derived from a Bayesian nonparametric mixture of Dirichlet process model; with some modifications. The resulting approach then more closely resembles a classical hierarchical grouping rule in that it depends on sums of squares of neighboring values. The proposed probability model for classification relies on a numerical procedure based on a reversible Markov chain Monte Carlo (MCMC) algorithm for determining the probabilities. Some numerical illustrations comparing with alternative ideas for classification are provided.
引用
收藏
页码:389 / 403
页数:15
相关论文
共 50 条
  • [21] Trajectory-Based Scene Understanding Using Dirichlet Process Mixture Model
    Santhosh, Kelathodi Kumaran
    Dogra, Debi Prosad
    Roy, Partha Pratim
    Chaudhuri, Bidyut Baran
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (08) : 4148 - 4161
  • [22] Lifelong Infinite Mixture Model Based on Knowledge-Driven Dirichlet Process
    Ye, Fei
    Bors, Adrian G.
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10675 - 10684
  • [23] A topic tracking oriented Dirichlet process mixture model
    Wang, Chan
    Wang, Xiao-Jie
    Yuan, Cai-Xia
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2012, 35 (03): : 91 - 94
  • [24] Comparative Analysis of Improved Dirichlet Process Mixture Model
    Wu, Lili
    Fam, Pei Shan
    Ali, Majid Khan Majahar
    Tian, Ying
    Ismail, Mohd. Tahir
    Jamaludin, Siti Zulaikha Mohd
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (06): : 1099 - 1118
  • [25] Nonparametric empirical Bayes for the Dirichlet process mixture model
    Jon D. McAuliffe
    David M. Blei
    Michael I. Jordan
    Statistics and Computing, 2006, 16 : 5 - 14
  • [26] Graph Clustering Using Dirichlet Process Mixture Model
    Atastina, Imelda
    Sitohang, Benhard
    Putri, G. A. S.
    Moertini, Veronica S.
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE), 2017,
  • [27] Clustering with label constrained Dirichlet process mixture model
    Burhanuddin, Nurul Afiqah
    Adam, Mohd Bakri
    Ibrahim, Kamarulzaman
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 107
  • [28] Mean field inference for the Dirichlet process mixture model
    Zobay, O.
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 507 - 545
  • [29] Nonparametric empirical Bayes for the Dirichlet process mixture model
    McAuliffe, JD
    Blei, DM
    Jordan, MI
    STATISTICS AND COMPUTING, 2006, 16 (01) : 5 - 14
  • [30] Dirichlet Process Mixture Model for Summarizing the Social Web
    Guan, Xinjun
    Yang, Ying
    Yang, Xinru
    Lin, Chen
    SOCIAL MEDIA PROCESSING, SMP 2015, 2015, 568 : 83 - 94