The numerical range of products of normal matrices

被引:1
|
作者
Drury, SW [1 ]
机构
[1] McGill Univ, Dept Math & Stat, W Montreal, PQ H3A 2K6, Canada
关键词
trace class multiplier; Schur multiplier; spectral distance; numerical range; normal matrix;
D O I
10.1016/S0024-3795(98)10224-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an earlier paper, the author developed a formula for the trace class multiplier norm of a matrix of rank at most 2. In this article, applications of this formula are given. In the main result we suppose that f(1),...,f(n) and g(1),...,g(n) are given sets of complex numbers. A description is given of the union of the numerical ranges of the product FG as F and G run over all nxn normal matrices with the given sets as eigenvalues. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:283 / 292
页数:10
相关论文
共 50 条
  • [31] Numerical range of a normal compression
    Gau, HL
    Wu, PY
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4): : 195 - 201
  • [32] The c-numerical range of tridiagonal matrices
    Chien, MT
    Nakazato, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 335 (1-3) : 55 - 61
  • [33] Numerical range of some doubly stochastic matrices
    Camenga, Kristin A.
    Rault, Patrick X.
    Rossi, Daniel J.
    Sendova, Tsvetanka
    Spitkovsky, Ilya M.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 40 - 47
  • [34] ON THE NUMERICAL RANGE OF KAC-SYLVESTER MATRICES
    Bebiano, N.
    Lemos, R.
    Soares, G.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 242 - 259
  • [35] The higher rank numerical range of nonnegative matrices
    Aretaki, Aikaterini
    Maroulas, Ioannis
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (03): : 435 - 446
  • [36] On the numerical range of matrices over a finite field
    Ballico, E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 162 - 171
  • [37] Matrices with hyperbolical Krein space numerical range
    Bebiano, N.
    Lemos, R.
    Soares, G.
    ADVANCES IN OPERATOR THEORY, 2025, 10 (01)
  • [38] Indefinite numerical range of 3 × 3 matrices
    N. Bebiano
    J. da Providência
    R. Teixeira
    Czechoslovak Mathematical Journal, 2009, 59 : 221 - 239
  • [39] Sets of matrices with given joint numerical range
    Krupnik, Naum
    Spitkovsky, Ilya M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (2-3) : 569 - 585
  • [40] APPROXIMATION OF THE NUMERICAL RANGE OF POLYNOMIAL OPERATOR MATRICES
    Muhammad, Ahmed
    OPERATORS AND MATRICES, 2021, 15 (03): : 1073 - 1087